1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Zanzabum
3 years ago
13

A ball is thrown horizontally from the top of a 60 m building and lands 100 m from the base of the building. How long is the bal

l in the air? What must have been the initial horizontal component of the velocity? What is the vertical component of the velocity just before the ball hits the ground? What is the velocity of the ball just before it hits the ground?
Physics
1 answer:
zhannawk [14.2K]3 years ago
7 0

Answer:

The ball is in the air for 3.5 seconds

The initial horizontal component of velocity is 28.6 m/s

The vertical component of the final velocity is 34.3 m/s downward

The final velocity is 44.7 m/s in the direction 50.2° below the horizontal

Explanation:

A ball is thrown horizontally

That means the vertical component of the initial velocity u_{y}=0

The initial velocity is the horizontal component u_{x}

The ball is thrown from the top of a 60 m

That means the vertical displacement component y = 60 m

→ y = u_{y} t + \frac{1}{2} gt²

where g is the acceleration of gravity and t is the time

y = -60 m , g = -9.8 m/s² , u_{y}=0

Substitute these values in the rule

→ -60 = 0 + \frac{1}{2} (-9.8)t²

→ -60 = -4.9t²

Divide both sides by -4.9

→ 12.2449 = t²

Take √ for both sides

∴ t = 3.5 seconds

* <em>The ball is in the air for 3.5 seconds </em>

The initial velocity is the horizontal component u_{x}

The ball lands 100 meter from the base of the building

That means the horizontal displacement x = 100 m

→ x = u_{x} t

→ t = 3.5 s , x = 100 m

Substitute these values in the rule

→ 100 = u_{x} (3.5)

Divide both sides by 3.5

→ u_{x} = 28.57 m/s

<em>The initial horizontal component of velocity is 28.6 m/s</em>

The vertical component of the final velocity is v_{y}

→ v_{y} = u_{y} + gt

→ u_{y} = 0 , g = -9.8 m/s² , t = 3.5 s

Substitute these values in the rule

→ v_{y} = 0 + (-9.8)(3.5)

→ v_{y} = -34.3 m/s

<em>The vertical component of the final velocity is 34.3 m/s downward</em>

The final velocity v is the resultant vector of  v_{x} and v_{y}

→ Its magnetude is v=\sqrt{(v_{x})^{2}+(v_{y})^{2}}

→ Its direction tan^{-1}\frac{v_{y}}{v_{x}}

→ v_{y} = 28.6 , v_{y} = -34.3

Substitute this values in the rules above

→ v=\sqrt{(28.6)^{2}+(-34.3)^{2}}=44.66

→ Its direction tan^{-1}\frac{-34.3}{28.6}=-50.18

The negative sign means the direction is below the horizontal

<em>The final velocity is 44.7 m/s in the direction 50.2° below the horizontal</em>

You might be interested in
What happens if the breakdown voltage is exceeded.
s2008m [1.1K]

Answer:

this may help

Explanation:

maybe it will cause the eletric cause a fire that will mean it will spread till the fire men should come

7 0
2 years ago
Suppose that the Mars orbiter was to have established orbit at 155 km and that one group of engineers specified this distance as
MAXImum [283]

Answer:

108 km

Explanation:

The conversion factor between meters and feet is

1 m = 3.28 ft

So the second altitude, written in feet, can be rewritten in meters as

h_2 = 1.55 \cdot 10^5 ft \cdot \frac{1}{3.28 ft/m}=4.7\cdot 10^4 m

or in kilometers,

h_2 = 47 km

the first altitude in kilometers is

h_1 = 155 km

so the difference between the two altitudes is

\Delta h = 155 km - 47 km = 108 km

8 0
3 years ago
| A 1.0 kg stone is dropped from a bridge 100 m above a canyon. What will be the kinetic energy of the stone after it
Mnenie [13.5K]

Answer:

Option D

490 J

Explanation:

When at a height of 100 am above and released, the ball initially posses only potential energy. When it falls, some potential energy is converted to kinetic energy.

Initial potential energy= mgh where m is the mass, g is the acceleration due to gravity and h is height. Substituting 1 Kg for m, 9.81 for g and 100 m for h then

PE initial = 1*9.81*100= 981 J

At 50 m, PE will be 1*9.81*50=490.5 J

Subtracting PE at 50 m from initial PE we get the energy that has been converted to kinetic energy hence

981-490.5= 490.5 J

Approximately, 490 J

8 0
3 years ago
A 100 kg cart goes around the inside of a vertical loop of a roller coaster. The radius of the loop is 3 m and the cart moves at
Sphinxa [80]

Answer:

200 N

Explanation:

8 0
3 years ago
Which form of energy moves spontaneously from hot objects to cold objects?
Mumz [18]

Answer:

heat

Explanation:

google ( ╹▽╹ )✧◝(⁰▿⁰)◜✧

6 0
3 years ago
Other questions:
  • A weightlifter lifts a 125-kg barbell straight up 1.15 m in 2.5 s. What was the power expended by the weightlifter?
    14·1 answer
  • A rectangular loop of area A is placed in a region where the magnetic field is perpendicular to the plane of the loop. The magni
    10·1 answer
  • wnat happens to the sound intensity level (expressed in dB) if we doubled the intensity of the voice of a specific sound?​
    15·1 answer
  • Astrology, that unlikely and vague pseudoscience, makes much of the position of the planets at the moment of one’s birth. The on
    5·1 answer
  • Corn plants and milkweed plants grow in the same area. Over several years, the milkweed plants have taken over the field and the
    12·2 answers
  • I need help with forms of energy.
    14·1 answer
  • What is the quantity of work done when a crane lifts a 100-n block from 2 m above the ground to 6 m above the ground?.
    11·1 answer
  • After watching the video below and based on your personal experiences, is there a difference
    6·1 answer
  • How does the government involve in a child or young person’s upbringing in your<br> country?
    15·1 answer
  • during a lunar mission, it is necessary to increase the speed of a spacecraft by 2.2 m/s when it is moving at 400 m/s relative t
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!