1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
VMariaS [17]
3 years ago
9

A pendulum consists of a large balanced mass hanging on the end of a long wire. At the point where a 28-kg pendulum has the grea

test potential energy, the angle between the pendulum’s weight and the wire is 89°.What is the wire’s length if the magnitude of the torque exerted by the pendulum’s weight at this position is 1.84 × 104 N•m?
Physics
1 answer:
Ray Of Light [21]3 years ago
6 0

Answer:

The length of the wire is approximately 67.1 m

Explanation:

The parameters of the pendulum are;

The mass of the pendulum, m = 28 kg

The angle between the pendulum weight and the wire, θ = 89°

The magnitude of the torque exerted by the pendulum's weight, τ = 1.84 × 10⁴ N·m

We have;

Torque, τ = F·L·sinθ = m·g·l·sinθ

Where;

F = The applies force = The weight of the pendulum = m·g

g = The acceleration due to gravity ≈ 9.8 m/s²

l = The length of the wire

Plugging in the values of the variables gives;

1.84 × 10⁴ N·m = 28 kg × 9.8 m/s² × l × sin(89°)

Therefore;

l = 1.84 × 10⁴ N·m/(28 kg × 9.8 m/s² ×  sin(89°)) = 67.0656080029 m ≈ 67.1 m

The length of the wire, l ≈ 67.1 m

You might be interested in
Which of the following statements is TRUE about updating the exposure control plan?
iren2701 [21]

Statements that are true as regards exposure control plan and its updating are;

<em>Updates must have the  reflection of changes in tasks as well in procedures.</em>

<em>Updates must reflect changes in positions that affect occupational exposure.</em>

<em>Updates must have the cost of PPE that is needed and  necessary to reduce exposure</em>

An exposure control plan can be regarded as  the framework for compliance between the employer and the workers.

  • This framework give room for the employer to creates a written plan that will help in protecting their workers from bloodborne pathogens.

  • This plan gives hope to workers in term of protection when working with their Employer.

  • There are some elements that is associated with  Exposure Control Plan, and theses are;
  1. Health hazards as well as  risk that is attributed to  each product in the worksite.
  2. Statement of purpose.
  3. procedures and practices in a written form
  4. Responsibilities from the Manager, CEO, designated resources and employer.

Therefore, exposure control plan is avenue to protect workers from bloodborne pathogens.

brainly.com/question/1203927?referrer=searchResults

3 0
3 years ago
NASA is giving serious consideration to the concept of solar sailing. A solar sailcraft uses a large, low mass sail and the ener
Stella [2.4K]

Answer:

Reflective

Explanation:

The radiation pressure of the wave that totally absorbed is given by;

P_{abs}= \frac{I}{C}

and While the radiation pressure of the wave totally reflected is given by;

P_{ref}= \frac{2I}{C}

Now compare the two-equation you can clearly see that the pressure due to reflection is larger than absorption therefore the sail should be reflective.

6 0
3 years ago
A cyclist accelerates from a velocity of 10 miles/hour east until reaching a velocity of 20 miles/hour east in 5 seconds. What w
Sliva [168]

Answer:

a = 0.894\ m/s^2

Explanation:

<u>Motion with Constant Acceleration</u>

A body moves with constant acceleration when the speed changes uniformly in time. The equation used to find the final speed vf is

v_f=v_o+at

Where vo is the initial speed, a is the acceleration, and t is the time.

The cyclist has an initial speed of vo=10 miles/hour and ends up at vf=20 miles/hour in t=5 seconds.

Both speeds are given in miles/hour and we must convert it to m/s:

1 mile/hour = 0.44704 m/s

10 mile/hour = 4.47 m/s

20 mile/hour = 8.94 m/s

The acceleration is calculated by solving for a:

\displaystyle a=\frac{v_f-v_o}{t}

\displaystyle a=\frac{8.94-4.47}{5}

a = 0.894\ m/s^2

3 0
3 years ago
Usain Bolt's world-record 100 m sprint on August 16, 2009, has been analyzed in detail. At the start of the race, the 94.0 kg Bo
ZanzabumX [31]

a) 893 N

b) 8.5 m/s

c) 3816 W

d) 69780 J

e) 8030 W

Explanation:

a)

The net force acting on Bolt during the acceleration phase can be written using Newton's second law of motion:

F_{net}=ma

where

m is Bolt's mass

a is the acceleration

In the first 0.890 s of motion, we have

m = 94.0 kg (Bolt's mass)

a=9.50 m/s^2 (acceleration)

So, the net force is

F_{net}=(94.0)(9.50)=893 N

And according to Newton's third law of motion, this force is equivalent to the force exerted by Bolt on the ground (because they form an action-reaction pair).

b)

Since Bolt's motion is a uniformly accelerated motion, we can find his final speed by using the following suvat equation:

v=u+at

where

v is the  final speed

u is the initial speed

a is the acceleration

t is the time

In the first phase of Bolt's race we have:

u = 0 m/s (he starts from rest)

a=9.50 m/s^2 (acceleration)

t = 0.890 s (duration of the first phase)

Solving for v,

v=0+(9.50)(0.890)=8.5 m/s

c)

First of all, we can calculate the work done by Bolt to accelerate to a speed of

v = 8.5 m/s

According to the work-energy theorem, the work done is equal to the change in kinetic energy, so

W=K_f - K_i = \frac{1}{2}mv^2-0

where

m = 94.0 kg is Bolt's mass

v = 8.5 m/s is Bolt's final speed after the first phase

K_i = 0 J is the initial kinetic energy

So the work done is

W=\frac{1}{2}(94.0)(8.5)^2=3396 J

The power expended is given by

P=\frac{W}{t}

where

t = 0.890 s is the time elapsed

Substituting,

P=\frac{3396}{0.890}=3816 W

d)

First of all, we need to find what is the average force exerted by Bolt during the remaining 8.69 s of motion.

In the first 0.890 s, the force exerted was

F_1=893 N

We know that the average force for the whole race is

F_{avg}=820 N

Which can be rewritten as

F_{avg}=\frac{0.890 F_1 + 8.69 F_2}{0.890+8.69}

And solving for F_2, we find the average force exerted by Bolt on the ground during the second phase:

F_{avg}=\frac{0.890 F_1 + 8.69 F_2}{0.890+8.69}\\F_2=\frac{(0.890+8.69)F_{avg}-0.890F_1}{8.69}=812.5 N

The net force exerted by Bolt during the second phase can be written as

F_{net}=F_2-D (1)

where D is the air drag.

The net force can also be rewritten as

F_{net}=ma

where

a=\frac{v-u}{t} is the acceleration in the second phase, with

u = 8.5 m/s is the initial speed

v = 12.4 m/s is the final speed

t = 8.69 t is the time elapsed

Substituting,

a=\frac{12.4-8.5}{8.69}=0.45 m/s^2

So we can now find the average drag force from (1):

D=F_2-F_{net}=F_2-ma=812.5 - (94.0)(0.45)=770.2 N

So the increase in Bolt's internal energy is just equal to the work done by the drag force, so:

\Delta E=W=Ds

where

d is Bolt's displacement in the second part, which can be found by using suvat equation:

s=\frac{v^2-u^2}{2a}=\frac{12.4^2-8.5^2}{2(0.45)}=90.6 m

And so,

\Delta E=Ds=(770.2)(90.6)=69780 J

e)

The power that Bolt must expend just to voercome the drag force is given by

P=\frac{\Delta E}{t}

where

\Delta E is the increase in internal energy due to the air drag

t is the time elapsed

Here we have:

\Delta E=69780 J

t = 8.69 s is the time elapsed

Substituting,

P=\frac{69780}{8.69}=8030 W

And we see that it is about twice larger than the power calculated in part c.

3 0
3 years ago
The majority of earthquakes worldwide occur at all but one location. That is A)at tectonic plate boundaries.B)where sediments de
DENIUS [597]

Answer:b

Explanation:

6 0
3 years ago
Other questions:
  • What is single kind of organism that can reproduce on its own?
    10·2 answers
  • How do animals release water vapor?
    6·1 answer
  • About 800 billion years ago there was series of ice ages , why ?????
    14·1 answer
  • A tree on a hillside casts a shadow 215 ft down the hill. If the angle of inclination of the hillside is 22???? to the horizonta
    14·1 answer
  • The human ear canal is, on average, 2.5cm long and aids in hearing by acting like a resonant cavity that is closed on one end an
    12·1 answer
  • Plz answer these two questions. I am so sick.if u ddo it would mean a lot.
    14·1 answer
  • Dos Autos se acercan uno hacia el otro como se muestra en la figura. Si los carros chocan y quedan pegados, DETERMINE: a) las co
    11·1 answer
  • A wave has a wavelength of 3 m and a frequency of 340 Hz. How far will the wave go in 20 s?
    14·1 answer
  • A type of anchor that is a good choice when jacking or leveling
    9·1 answer
  • A train is traveling at 30.0 m/sm/s relative to the ground in still air. The frequency of the note emitted by the train whistle
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!