Answer: Mitochondria. The mitochondria contains cristae.
<u>Answer:</u> The correct answer is Option D.
<u>Explanation:</u>
To calculate the hybridization of
, we use the equation:
![\text{Number of electron pair}=\frac{1}{2}[V+N-C+A]](https://tex.z-dn.net/?f=%5Ctext%7BNumber%20of%20electron%20pair%7D%3D%5Cfrac%7B1%7D%7B2%7D%5BV%2BN-C%2BA%5D)
where,
V = number of valence electrons present in central atom (S) = 6
N = number of monovalent atoms bonded to central atom = 0
C = charge of cation = 0
A = charge of anion = 0
Putting values in above equation, we get:
![\text{Number of electron pair}=\frac{1}{2}[6]=3](https://tex.z-dn.net/?f=%5Ctext%7BNumber%20of%20electron%20pair%7D%3D%5Cfrac%7B1%7D%7B2%7D%5B6%5D%3D3)
The number of electron pair around the central metal atom are 3. This means that the hybridization will be
and the electronic geometry of the molecule will be trigonal planar.
Hence, the correct answer is Option D.
First write the molecular equation with states:
(NH4)2S (aq) + 2AgNO3(aq) → Ag2S (s) + 2NH4NO3
Now write a full ionic equation by separating into ions all substances that dissociate: anything (s) (g) or (l) does not dissociate
2NH4 + (aq) + S 2-(aq) + 2Ag+ (aq) + 2NO3- (aq) → Ag2S(s) + 2NH4 + (aq) + 2NO3- (aq)
To write the NET IONIC equation, inspect the full ionic equation above and delete anything that appears on both sides of the → sign:
Net ionic equation:
S 2-(aq) + 2Ag + (aq) → Ag2S(s)
1- false
2- true
3- true
4- false
5- true
6- false
7- true
8- true
9- true
10- false
Hope it helps :)