Magnalium: Magnesium and Aluminum
Bronze: Copper, Tin, Arsenic, Phosphorus, Aluminum, Manganese and Silicon (whichever you learned in class from those)
Answer:
K₂CrO₅
Explanation:
The empirical formula is the simplest formula of a compound. To find the empirical formula, we follow the procedure below:
Elements Potassium Chromium Oxygen
Mass 6.52 4.34 5.34
Molar mass 39 60 16
Number of moles 6.52/39 4.34/60 5.34/16
0.167 0.072 0.333
Divide through by
the smallest 0.167/0.072 0.072/0.072 0.333/0.072
2.3 1 4.6
2 1 5
Empirical formula K₂CrO₅
Appropriate units for the speed of a chemical reaction, the reaction rate, are M/s
<u>Answer:</u> The pH of the buffer is 4.61
<u>Explanation:</u>
To calculate the pH of acidic buffer, we use the equation given by Henderson Hasselbalch:
![pH=pK_a+\log(\frac{[\text{conjuagate base}]}{[\text{acid}]})](https://tex.z-dn.net/?f=pH%3DpK_a%2B%5Clog%28%5Cfrac%7B%5B%5Ctext%7Bconjuagate%20base%7D%5D%7D%7B%5B%5Ctext%7Bacid%7D%5D%7D%29)
We are given:
= negative logarithm of acid dissociation constant of weak acid = 4.70
= moles of conjugate base = 3.25 moles
= Moles of acid = 4.00 moles
pH = ?
Putting values in above equation, we get:

Hence, the pH of the buffer is 4.61
Answer:
A) pH of Buffer solution = 4.59
B) pH after 5.0 ml of 2.0 M NaOH have been added to 400 ml of the original buffer solution = 4.65
Explanation:
This is the Henderson-Hasselbalch Equation:
![pH = pKa + log\frac{[conjugate base]}{[acid]}](https://tex.z-dn.net/?f=pH%20%3D%20pKa%20%2B%20log%5Cfrac%7B%5Bconjugate%20base%5D%7D%7B%5Bacid%5D%7D)
to calculate the pH of the following Buffer solutions.