I believe the correct gravity on the moon is 1/6 of Earth.
Take note there is a difference between 1 6 and 1/6.
HOWEVER, we should realize that the trick here is that the
question asks about the MASS of the astronaut and not his weight. Mass is an
inherent property of an object, it is unaffected by external factors such as
gravity. What will change as the astronaut moves from Earth to the moon is his
weight, which has the formula: weight = mass times gravity.
<span>Therefore if he has a mass of 50 kg on Earth, then he will
also have a mass of 50 kg on moon.</span>
Answer:
F=m*g is the formula and the answer is 19,620 kg
Explanation:
Since the formula is F=m*g and Earth's gravity is 9.81 m/s^2 all you need to do is multiply 2,000 by 9.81
Yes because if they are further away it makes it hard for them to attract each other
Answer:
Africa
Explanation:
A rogue wave refers to the wave that is twice the height of a significant wave occurring in a particular area. The significant wave height is generally referred to as the mean of the largest one-third of waves existing at a particular time period. In simple words, a rogue wave is much larger than any other waves that occur at the proximity of the same time.
This rough wave describes the interaction between the ocean and sea current and swelling of waves. It takes place when the large swells in the ocean, also known as the Antarctic storms, strikes with the rapidly traveling Agulhas current, and the curved water current focuses on the energy of the waves.
Thus, these Rogue waves are often generated along the southeastern coastal regions of Africa, where there occurs the convergence of Antarctic storm waves and Agulhas Current.
Inertia is the resistance of an object to a change in its B. Motion