Answer:
Radioisotope -> An atom with an unstable nucleus
Radioactivity -> The spontaneous discharge of energy from an unstable nucleus
Radioactive Decay -> The process by which the nucleus of an unstable isotope changes
Strong Nuclear Force -> Binds protons and neutrons together in the nucleus
Explanation:
Just completed the question
A transmission system at a radio station uses an oscillator
to convert a direct current into a high frequency alternating current. Direct
current or DC is the current in which the flow of the charge is one
directional. In case of alternating current or AC, the flow of the charge
reverses direction after a period of time.
<span>In regards to the second
question, a unit for measuring frequency is the hertz. So the correct answer to
the given question is option “B”. </span>
Answer:
a) 17.33 V/m
b) 6308 m/s
Explanation:
We start by using equation of motion
s = ut + 1/2at², where
s = 1.2 cm = 0.012 m
u = 0 m/s
t = 3.8*10^-6 s, so that
0.012 = 0 * 3.8*10^-6 + 0.5 * a * (3.8*10^-6)²
0.012 = 0.5 * a * 1.444*10^-11
a = 0.012 / 7.22*10^-12
a = 1.66*10^9 m/s²
If we assume the electric field to be E, and we know that F =qE. Also, from Newton's law, we have F = ma. So that, ma = qE, and E = ma/q, where
E = electric field
m = mass of proton
a = acceleration
q = charge of proton
E = (1.67*10^-27 * 1.66*10^9) / 1.6*10^-19
E = 2.77*10^-18 / 1.6*10^-19
E = 17.33 V/m
Final speed of the proton can be gotten by using
v = u + at
v = 0 + 1.66*10^9 * 3.8*10^-6
v = 6308 m/s
Answer:
The specific kinetic energy of a mass is 0.8 kJ/kg
Explanation:
Given that,
Velocity = 40 m/s
Specific kinetic energy is the kinetic energy per unit mass.
We need to calculate the specific kinetic energy
Using formula of specific kinetic energy


Put the value into the formula


We know that,
1 kJ = 1000 J
or, 1J=0.001 KJ
The specific energy is


Hence, The specific kinetic energy of a mass is 0.8 kJ/kg
Here u go I will submit other help for u