Sure !
Start with Newton's second law of motion:
Net Force = (mass) x (acceleration) .
This formula is so useful, and so easy, that you really
should memorize it.
Now, watch:
The mass of the box is 5.25 kilograms, and the box is
accelerating at the rate of 2.5 m/s² .
What's the net force on the box ?
Net Force = (mass) x (acceleration)
= (5.25 kilograms) x (2.5 m/s²)
Net force = 13.125 newtons .
But hold up, hee haw, whoa ! Wait a second !
Bella is pushing with a force of 15.75 newtons, but the box
is accelerating as if the force on it is only 13.125 newtons.
What happened to the rest of Bella's force ? ?
==> Friction is pushing the box in the opposite direction,
and cancelling some of Bella's force.
How much ?
(Bella's 15.75 newtons) minus (13.125 that the box feels)
= 2.625 newtons backwards, applied by friction.
Answer:
To find out the area of the hot filament of a light bulb, you would need to know the temperature, the power input, the Stefan-Boltzmann constant and <u>Emissivity of the Filament</u>.
Explanation:
The emissive power of a light bulb can be given by the following formula:
E = σεAT⁴
where,
E = Power Input or Emissive Power
σ = Stefan-Boltzmann constant
ε = Emissivity
A = Area
T = Absolute Temperature
Therefore,
A = E/σεT⁴
So, to find out the area of the hot filament of a light bulb, you would need to know the temperature, the power input, the Stefan-Boltzmann constant and <u>Emissivity of the Filament</u>.
Answer: If all forces acting on a car are zero, than the cars speed is zero since there are no forces to push or pull the car :)
Explanation:
Answer: The author uses metaphors to explain how childeren taking on certain traits by (put what story is about here). The effect is that (put what happened at the end of story here).
Explanation:
Carbon-14 is naturally created with the interaction of high-energy cosmic rays with atmospheric nitrogen. As part of the atmosphere, living organisms take in the carbon and incorporate this into living tissues. As long as the organism is alive and breathing, it keeps adding new carbon-14. When the organism dies, it stops gaining carbon-14 - or anything else, of course.
Carbon-14 is slightly radioactive, with a half-life of about 5700 years. If we assume that the atmospheric production of carbon-14 has been steady for the last 100,000 years, we can calculate the approximate age of when the organism died by determining what percentage of carbon-14 still exists in the dead material.
Paleo-archaeologists and anthropologists use this information when studying old cultures and civilizations.