The frequency of note C3 is 131
.
<u>Explanation:</u>
Frequency is the measure of repetition of same thing a certain number of times. So frequency is inversely proportional to the wavelength. As wavelength is distance between two successive crests or troughs in a sound wave.
And frequency is the completion of number of cycles in a given time in sound waves. The frequency and wavelength are inversely proportional to each other with velocity of sound being the proportionality constant.
Thus, here the speed of sound is given as 343 m/s, the wavelength of the note is also given as 2.62 m, then frequency will be as follows:

Thus,

So the frequency of note C3 is 131
.
That would be reflection.
Answer:
The time it takes the ball to stop is 0.021 s.
Explanation:
Given;
mass of the softball, m = 720 g = 0.72 kg
velocity of the ball, v = 15.0 m/s
applied force, F = 520 N
Apply Newton's second law of motion, to determine the time it takes the ball to stop;

Therefore, the time it takes the ball to stop is 0.021 s.
Radial acceleration is given by

where

then

Now

Using the relation


Putting into rpm
Answer:
A star with 15 solar masses is too big to be a main-sequence star.