We use a spectrometer to help us determine what stars and planets are made of by passing a light through various chemical elements, different spectral patterns are created. By matching those patterns up to patterns generated in a laboratory environment we can tell what the composition of a distant star or planet is.
Answer:
Explanation:
a )
Radius of the sun = .69645 x 10⁹ m .
600 times = 600 x .69645 x 10⁹ m
= 4.1787 x 10¹¹ m .
surface area A = 4π (4.1787 x 10¹¹)²
= 219.317 x 10²²
energy radiated E = σ A Τ⁴
= 5.67 x 10⁻⁸ x 219.317 x 10²² x (3000)⁴
= 100695 x 10²⁶ J
To know the wavelength of photon emitted


= 2.89777 x 10⁻³ / 3000
= 966 nm
= 1275 /966 eV
1.32 x 1.6 x 10⁻¹⁹ J
= 2.112 x 10⁻¹⁹ J
No of photons radiated = 100695 x 10²⁶ / 2.112 x 10⁻¹⁹
= 47677.5 x 10⁴⁵
= .476 x 10⁵⁰ .
b )
energy radiated by our sun per second
E₂ = σ A 5800⁴
energy radiated by Betelgeuse per second
E₁ = σ x 600²A x 3000⁴
E₁ / E₂ = σ x 600²A x 3000⁴ / σ A 5800⁴
= 36 X 10⁴ x 3⁴ x 10¹² / 58⁴ x 10⁸
= 25.76 x 10⁸ x 10⁻⁵
= 25760 times .
Answer:
no
Explanation:
the moon's force of gravity is not strong enough to pull you down compared to earth, so you will just float
Answer:
what are you saying man. They do provide structure.
Explanation:
Answer:
Flattens out into the ecliptic plane and spins faster due to conservation of angular momentum.
Explanation:
A star is formed in a molecular cloud of gas and dust, mainly composed of hydrogen and helium. The Nebular Theory establishes, for the formation of the solar system, that the cloud starts to collapse under its own gravity when it receives a shock wave from a near event, for example, a supernova explosion. That results in the cloud breaking in small pieces, and those pieces constitute a possible future star.
Then it begins to accrete and rotate as a consequence of the angular momentum.
(1)
Where m is the mass, r is the radius and v is the velocity and
is the angle between the velocity and r.