348.34 m/s. When Superman reaches the train, his final velocity will be 348.34 m/s.
To solve this problem, we are going to use the kinematics equations for constant aceleration. The key for this problem are the equations
and
where
is distance,
is the initial velocity,
is the final velocity,
is time, and
is aceleration.
Superman's initial velocity is
, and he will have to cover a distance d = 850m in a time t = 4.22s. Since we know
,
and
, we have to find the aceleration
in order to find
.
From the equation
we have to clear
, getting the equation as follows:
.
Substituting the values:

To find
we use the equation
.
Substituting the values:

Answer: The free - body diagrams for blocks A and B. frictionless surface by a constant horizontal force F = 100 N. Find the tension in the cord between the 5 kg and 10 kg blocks. The string that attaches it to the block of mass M2 passes over a frictionless pulley of negligible mass. The coefficient of kinetic friction Hk between M.
Explanation: Hope this helped :)
Simple cells have liquid chemicals, making it harder for it to carry. While as dry cells have no liquid chemicals, making it easier to carry.
Answer:
She can consider using agricultural waste or dried dung.
Explanation:
No doubt, biomass has become a crucial source of energy to the society, with almost 90% of the households in rural area now relying on biomass for energy. Biomass has become a great option for household heating and cooking. It is locally available and abundant. It is a clean type of fuel, unlike fossil fuels and it somehow helps in cleaning our environment as it traps carbondioxide. Some common types of biomass include dried dung, agricultural waste, or even charcoal.