<h3><u>Given</u><u>:</u><u>-</u></h3>
Acceleration,a = 3 m/s²
Initial velocity,u = 0 m/s
Final velocity,v = 12 m/s
<h3><u>To</u><u> </u><u>be</u><u> </u><u>calculated:-</u><u> </u></h3>
Calculate the time take by a car.
<h3><u>Solution:-</u><u> </u></h3>
According to the first equation of motion:
v = u + at
★ Substituting the values in the above formula,we get:
⇒ 12 = 0 + 3 × t
⇒ 12 = 3t
⇒ 3t = 12
⇒ t = 12/3
⇒ t = 4 sec
Answer:
Both atypical and traditional antipsychotics <u>blocks</u> levels of<u> </u><u>serotonin</u><u>.</u>
Explanation:
These drugs are capable of reducing or turning off positive psychotic symptoms such as hallucinations, delusions, and language and behavior disorder.
In addition to also acting as mood stabilizers, they have an impact on mania, depression, and produce low anxiety.
These anti-psychotics work on the 5-HT2A receptor, it belongs to the family of serotonin receptors and it is a G protein-coupled receptor. 5-HT is short for 5-hydroxy-tryptamine, the chemical name for serotonin.
This receptor became notorious for its importance as a target for drugs like LSD. Later it became important again due to the action of many antipsychotic drugs, especially atypical ones.
Answer:
Mechanical advantage = 3
Explanation:
You exert a 100-N force on a pulley system to lift 300-N.
The mechanical advantage of the system is given by the ratio of output force to the input force.
Here, output force = 300 N and input force = 100 N
Mechanical advantage,

Mechanical advantage is 3 it means that there are 3 sections of rope support. Hence, this is the required solution.
Answer:
0.1667 m/s
Explanation:
m1V1 + m2V2 = m1V3 + m2V4
0.01 = ( 0.0075) + (0.015 * V4)
V4 = (0.01 - 0.0075) / (0.015)
V4= 0.1667
Answer:
The sum of all forces for the two objects with force of friction F and tension T are:
(i) m₁a₁ = F
(ii) m₂a₂ = T - F
1) no sliding infers: a₁ = a₂= a
The two equations become:
m₂a = T - m₁a
Solving for a:
a = T / (m₁+m₂) = 2.1 m/s²
2) Using equation(i):
F = m₁a = 51.1 N
3) The maximum friction is given by:
F = μsm₁g
Using equation(i) to find a₁ = a₂ = a:
a₁ = μs*g
Using equation(ii)
T = m₁μsg + m₂μsg = (m₁ + m₂)μsg = 851.6 N
4) The kinetic friction is given by: F = μkm₁g
Using equation (i) and the kinetic friction:
a₁ = μkg = 6.1 m/s²
5) Using equation(ii) and the kinetic friction:
m₂a₂ = T - μkm₁g
a₂ = (T - μkm₁g)/m₂ = 12.1 m/s²