1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dolphi86 [110]
3 years ago
11

Two boxes are connected by a string. The first box has a mass of 4.2 kg and the

Physics
1 answer:
denis23 [38]3 years ago
8 0

Answer:

........

Explanation:

You might be interested in
A wave pulse travels down a slinky. The mass of the slinky is m = 0.87 kg and is initially stretched to a length L = 6.8 m. The
Ber [7]

Answer:

1. v=14.2259\ m.s^{-1}

2. F_T=25.8924\ N

3. \lambda=29.6373\ m

Explanation:

Given:

  • mass of slinky, m=0.87\ kg
  • length of slinky, L=6.8\ m
  • amplitude of wave pulse, A=0.23\ m
  • time taken by the wave pulse to travel down the length, t=0.478\ s
  • frequency of wave pulse, f=0.48\ Hz=0.48\ s^{-1}

1.

\rm Speed\ of\ wave\ pulse=Length\ of\ slinky\div time\ taken\ by\ the\ wave\ to\ travel

v=\frac{6.8}{0.478}

v=14.2259\ m.s^{-1}

2.

<em>Now, we find the linear mass density of the slinky.</em>

\mu=\frac{m}{L}

\mu=\frac{0.87}{6.8}\ kg.m^{-1}

We have the relation involving the tension force as:

v=\sqrt{\frac{F_T}{\mu} }

14.2259=\sqrt{\frac{F_T}{\frac{0.87}{6.8}} }

202.3774=F_T\times \frac{6.8}{0.87}

F_T=25.8924\ N

3.

We have the relation for wavelength as:

\lambda=\frac{v}{f}

\lambda=\frac{14.2259}{0.48}

\lambda=29.6373\ m

8 0
3 years ago
A brick lands 10.1 m from the base of a building. If it was given an initial velocity of 8.6 m/s [61º above the horizontal], how
Montano1993 [528]
<h2>Answer: 10.52m</h2><h2 />

First, we have to establish the <u>reference system</u>. Let's assume that the building is on the negative y-axis and that the brick was thrown at the origin (see figure attached).

According to this, the initial velocity V_{o} has two components, because the brick was thrown at an angle \alpha=61\º:

V_{ox}=V_{o}cos\alpha   (1)

V_{ox}=8.6\frac{m}{s}cos(61\º)=4.169\frac{m}{s}  (2)

V_{oy}=V_{o}sin\alpha   (3)

V_{oy}=8.6\frac{m}{s}sin(61\º)=7.521\frac{m}{s}   (4)

As this is a projectile motion, we have two principal equations related:

<h2>In the x-axis: </h2>

X=V_{ox}.t  (5)

Where:

X=10.1m is the distance where the brick landed

t is the time in seconds

If we already know X and V_{ox}, we have to find the time (we will need it for the following equation):

t= \frac{X}{ V_{ox}}  (6)

t=2.42s  (7)

<h2>In the y-axis: </h2>

-y=V_{oy}.t+\frac{1}{2}g.t^{2}   (8)

Where:

y is the height of the building (<u>in this case it has a negative sign because of the reference system we chose)</u>

g=-9.8\frac{m}{s^{2}} is the acceleration due gravity

Substituting the known values, including the time we found on equation (7) in equation (8), we will find the height of the building:

-y=(7.521\frac{m}{s})(2.42s)+\frac{1}{2}(-9.8\frac{m}{s^{2}}).(2.42s)^{2}   (9)

-y=-10.52m   (10)

Multiplying by -1 each side of the equation:

y=10.52m >>>>This is the height of the building

3 0
3 years ago
When Jim and Rob ride bicycles, Jim can only accelerate at three-quarters the acceleration of Rob. Both startfrom rest at the bo
Natali5045456 [20]

Answer:

46.4 s

Explanation:

5 minutes = 60 * 5 = 300 seconds

Let g = 9.8 m/s2. And \theta be the slope of the road, s be the distance of the road, a be the acceleration generated by Rob, 3a/4 is the acceleration generated by Jim .  Both of their motions are subjected to parallel component of the gravitational acceleration gsin\theta

Rob equation of motion can be modeled as s = a_Rt_R^2/2 = a300^2/2 = 45000a[/tex]

Jim equation of motion is s = a_Jt_J^2/2 = (3a/4)t_J^2/2 = 3at_J^2/8

As both of them cover the same distance

45000a = 3at_J^2/8

t_J^2 = 45000*8/3 = 120000

t_J = \sqrt{120000} = 346.4 s

So Jim should start 346.4 – 300 = 46.4 seconds earlier than Rob in other to reach the end at the same time

7 0
4 years ago
The atomic mass of an atom do not contain electrons because
Dimas [21]

Answer:

Electrons are so small that it does not affect the mass of atom .

Explanation:

Electrons are much smaller in mass than protons, weighing only 9.11 × 10^-28 grams, or about 1/1800 of an atomic mass unit. Therefore, they do not contribute much to an element's overall atomic mass.

7 0
3 years ago
Describe two experiments to determine the speed of propagation of a transverse wave on a rope. You have the following tools to u
AnnZ [28]

Answer:

#See solution for details.

Explanation:

1.

Tools:stopwatch, \ meter \ stick, \ mass \ measuring \ scale , \ force \ measuring  \ device.

Experiment \ 1:Calculate the speed of the wave using the time,t it takes to travel along the rope. Rope's length,L is measured using the meter stick.

-Attach one end of rope to a wall or post, shake from the unfixed end to generate a pulse. Measure the the time it takes for the pulse to reach the wall once it starts traveling using the stopwatch.

-Speed of the pulse can then be obtained as:

v=\frac{L}{t}

Experiment \ 2: Apply force of known value to the rope then use the following relation equation to find the speed of a pulse that travels on the rope.

v=\sqrt{\frac{F}{\mu}}\ ,\mu=\frac{m}{L}

-Use the measuring stick and measuring scale to determine L,m values of the rope then obtain \mu.

-Use the force measuring constant to determine F. These values can the be substituted in Experiment \ 1 to obtain v.

4 0
3 years ago
Other questions:
  • Exactly one pound of bread dough is placed in a baking tin. The dough is cooked in an oven at 350°F, releasing a wonderful aroma
    15·1 answer
  • To find the number of neutrons in an atom, you would subtract
    7·1 answer
  • Where a subducting plate slides beneath the lithosphere, melting takes place and a(n) ____ is created?
    9·1 answer
  • Artistic works in the animal style often contain ________ and images of abstracted animals.
    10·1 answer
  • Dense water near the poles sinks, creating a current towards the equator. What would you expect to happen to this current if tem
    11·1 answer
  • A 65.0 kg ice skater standing on frictionless ice throws a 0.15 kg snowball horizontally at a speed of 32.0 m/s. What is the vel
    11·1 answer
  • Which would take more force to stop in 10 seconds: an 8.0-kilogram ball rolling in a straight line at a speed of 0.2 m/sec or a
    13·2 answers
  • Can someone give me 4 examples of comparing stars life cycle to mans life cycle
    6·1 answer
  • An object has k.e. of 10J at a certain instant. If it is acted on by an opposing force of 5N, which of the number A to E below i
    5·1 answer
  • How does convection play a role in ocean currents?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!