The impact speed will be
v^2 = 2*9.8*1.3
v^2 = 25.48
v= 5.04 m/s
Answer:
300m per minute or 5m per second
Explanation:
Image distance, v = -17 cm (-ve for virtual image)
Radius of curvature of concave mirror, R = 39 cm
Focal length, f = -19.5 cm (-ve for a concave mirror)
(a) Using mirror's formula as :


u = 132.6 cm
So, the object is placed 132.6 cm in front of the mirror.
(b) Magnification of the mirror, 

m = -0.128
Hence, this is the required solution.
Answer:=14,160 kJ
Explanation: Let m1 and m2 be the initial and final amounts of mass within the tank, respectively. The steam properties are listed in the table below
Specific Internal SpecificTemp Pressure Volume Energy Enthalpy Quality Phase
C MPa m^3/kg kJ/kg kJ/kg
1 260 4.689 0.02993 2158 2298 0.7 Liquid Vapor Mixture
2 260 4.689 0.0422 2599 2797 1 Saturated Vapor
The mass initially contained in the tank is m1 = V/v1
m1 =0.85 m^3 /0.02993 m^3 /kg
= 28.4 kg
The mass finally contained in the tank is
m2 =V2/v
= 0.85 m^3 /0.0422 m^3 /kg
= 20.14 kg
The heat transfer is then
Qcv = m2u2 − m1u1 − he(m2 − m1)
Qcv = (20.14)(2599) − (28.4)(2158) − (2797)(20.14 − 28.4) = 14,160 kJ
Answer:
Explanation:
Given
two holes are made with different sizes
Hole 1 is large in size and hole 2 is small
If the volume flow rate of water is same for both the hole then small hole must be below the large hole because for same flow rate, velocity of water is large while cross-sectional area is small so it compensate to give same flow for both the holes.
Now for radius apply Bernoulli's theorem at hole 1 and 2


if hole 1 is h distance below water surface then 
and 
Also 

and 

thus 

