Pretty sure it is clockwise if I am not mistaken

The equivalent gravitational force is ~

We know that ~

where,
= mass of 1st object = 500 kg
= mass of 2nd object = 20kg
- G = gravitational constant =

- r = distance between the objects = 2.12 m
Let's calculate the force ~
The horizontal velocity<span> of a projectile is </span>constant<span> (a never </span>changing<span> in value), There is a </span>vertical<span>acceleration caused by gravity; its value is 9.8 m/s/s, down, The </span>vertical velocity<span> of a projectile </span>changes<span> by 9.8 m/s each second, The </span>horizontal<span> motion of a projectile is independent of its </span>vertical<span> motion.</span>
Answer:
= 2630.6 N.m
Explanation:
(FR)x = ΣFx = -F4 = -407 N
(FR)y = ΣFy =-F1-F2 -F3 = -510 - 306 - 501 = -1317 N
(MR)B =ΣM + Σ(±Fd)
= MA + F1(d1 +d2) + F2d2 - F4d3
= 1504 + 510(0.880+1.11) +306(1.11) - 407(0.560)
= 2630.64 N.m (counterclockwise)
Answer: critical angle, sin^-1 (n2/n1)
Explanation: the angle of incidence at which the retracted ray makes an angle of 90° with the normal is known as the critical angle.
Snell's law defined refraction mathematically as shown below
n1 sin θi = n2 sin θr
n1 = refractive index of the first medium
n2 = refractive index of the second medium
θi = angle of incidence
θr = angle of refraction
When the refrafted ray is perpendicular to the normal, the angle of refraction (θr) is 90° hence making the angle of incidence (θi) the critical angle θc
By substituting these conditions into the Snell's law, we have that
n1 sin θc = n2 sin 90
According to trigonometry, the value of sin 90 is 1, hence we have that
n1 sin θc =n2
sin θc = n2/n1
θc = sin^-1 (n2/n1)