<span>Humans first appeared during the Quaternary period. <span>The Quaternary or Neozoic period develops in the Cenozoic
era, which extends from 2,588 million years ago to the present. The
Quaternary is divided into two periods. The Pleistocene, the first and
longest period of the period, was characterized by the cycles of glaciations
and the appearance of the first humans (homos habilis); this period
extended from 2,588 million years to 10,000 years BC The Holocene, the second
epoch of the period, was characterized by the end of the glaciation and the
emergence of human civilization; this period extends from 10,000 years BC
to the present.</span></span>
Carbon(6 protons) + 2 protons = 8 protons
<u>Oxygen</u> = element with 8 protons
Answer:
Magnetic field can be used to produce current, infact a changing magnetic field can produce current.
A changing magnetic field in a loop causes the flux linked with the loop to change in turn generating a emf in the loop and therefore a current.
For a loop of area A and resistance R.
I =dPhi/dt/R
В. А
I = AcosФ/R .dB /dt
But it isn't reasonable to say that we can create a magnetic field by having a flow of current and this can be used to make more current because the current generated due to change in magnetic field created by increase/decrease in flow of current will be in a direction such that it will counter act the change in magnetic field caused by increase/decrease in current flow.(lenz's law).
We were unable to transcribe this image
Ф= В. А
I = Acos dB Rd
<h2>
Answer:</h2>
1.68 x 10⁻⁸Ωm
<h2>
Explanation:</h2>
The resistance (R) of a wire is related to its length(L), its material resistivity(ρ) and its crossectional area(A) as follows;
R = ρL/A ------------------------(i)
Where;
A = πd² / 4 [where d = diameter of the wire]
From the question;
L = 6.90m
d = 2.15mm = 0.00215m
R = 0.0320Ω
First calculate the crossectional area (A) of the wire as follows;
A = πd² / 4
[Take π = 3.142]
d = 0.00215m
∴ A = 3.142 x (0.00215)² / 4
∴ A = 0.000003631m²
Now, substitute the values of A, L, and R into equation (i) as follows;
R = ρL/A
0.0320 = ρ x 6.90 / 0.000003631
0.0320 = 1900302.95 x ρ
Solve for ρ;
=> ρ = 0.0320 / 1900302.95
=> ρ = 1.68 x 10⁻⁸Ωm
Therefore, the resistivity of the material of the wire is 1.68 x 10⁻⁸Ωm
I - ok. Czechoslovakia is officially taken.