1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
masya89 [10]
3 years ago
11

Which one of the following is correct? *

Physics
1 answer:
slamgirl [31]3 years ago
6 0

Answer:

uniform acceleration motion is a motion with constant acceleration.

You might be interested in
Lifting a box off the floor is an example of what type of force?
s2008m [1.1K]
Gravitational I think would be the answer, Hope this helps!
8 0
3 years ago
Read 2 more answers
Which technological advance allows scientists to handle these objects enough to feel their properties while still protecting the
muminat
The answer depends heavily on what 'objects' you're talking about.
5 0
3 years ago
Read 2 more answers
A rock is thrown upward with an initial velocity of 16 ft/s from an initial height of 5 ft. write a quadratic function equation
Andrei [34K]
During upward projection the final velocity is zero, and the gravitational acceleration is -10 m/s² (against the gravity).
Therefore; using the equation;
S = 1/2gt² + ut
Where s is the height h, g is gravitational acceleration, and t is the time and u is the initial velocity u, is 16 ft/s.
Thus; h= 1/2(-10)t² + 16t
We get; h = -5t² + 16t
Therefore; the quadratic equation is 5t² - 16t + h =0
5 0
3 years ago
A cylindrical tungsten filament 14.0 cmcm long with a diameter of 1.00 mmmm is to be used in a machine for which the temperature
Advocard [28]

Answer:

Resistivity ρ=1.12 x 10^-4 Ωm

Explanation:

ρ= RA/l, where R is resistance, A is cross sectional area and l is length

A=πr^2

Note Current is given R is proportion to temperature and inversely proportional to Current R=(20+273)/14*10^-2 =2000Ω

⇒ρ=R*πr^2/l all length in metre.

8 0
3 years ago
A factory worker pushes a 30.0-kg crate a distance of 4.5 m along a level floor at constant velocity by pushing horizontally on
SIZIF [17.4K]

(a) 73.5 N

The velocity of the crate is constant: this means that the acceleration is zero (a=0), so according to Newton's second law

\sum F = ma

the resultant of the forces must be zero: \sum F = 0 (1)

The motion is along the horizontal direction, so we are only interested in the forces acting along this direction. There are two of them:

F, the push applied by the worker

F_f=-\mu mg, the force of friction, with \mu=0.25 being the coefficient of friction, m=30.0 kg being the mass of the crate, and g=9.8 m/s^2. The negative sign is due to the fact that the friction acts in the opposite direction to the motion. Eq.(1) then becomes

F-\mu mg=0\\F=\mu mg=(0.25)(30.0 kg)(9.8 m/s^2)=73.5 N

So, this is the force that the worker must apply.

(b) 330.8 J

The work done by the pushing force of the worker on the crate is given by:

W=Fd cos \theta

where

F = 73.5 N is the force

d = 4.5 m is the displacement

\theta=0^{\circ} is the angle between the direction of the force and the displacement (0 degrees, since they are in same direction)

Substituting, we have

W=(73.5 N)(4.5 m)(cos 0^{\circ})=330.8 J

(c) -330.8 J

To calculate the work done by friction, we apply the same formula:

W=F_f d cos \theta

where

F_f = \mu mg=(0.25)(30.0 kg)(9.8 m/s^2)=73.5 N is the magnitude of the force of friction

d = 4.5 m is the displacement

\theta=180^{\circ} is the angle between the direction of the force of friction and the displacement (it is 180 degrees since the two are into opposite directions)

Substituting, we find

W=(73.5 N)(4.5 m)(cos 180^{\circ})=-330.8 J

So, the work done by friction is negative.

(d) 0 J

As before, the work done by any force on the crate is

W=F_f d cos \theta

We notice that both gravity and normal force are perpendicular to the displacement: therefore, \theta=90^{circ}, and so

cos \theta=0

which means that the work done by both forces is zero.

(e) 0 J

The total work done on the crate is the sum of the work done by the four forces acting on it, so:

W=W_{push} + W_{friction}+W_{gravity}+W_{normal}=330.8J-330.8J+0+0=0

And this is in accordance with the work-energy theorem, which states that the variation of kinetic energy of the crate is equal to the work done on it: since the crate is moving at constant velocity, its variation of kinetic energy is zero, as well as the work done on it.

5 0
3 years ago
Other questions:
  • A runner has an original velocity of 6 m/s and slows to a final velocity of 0 m/s. If the runner covers a
    10·1 answer
  • A reaction in a solution would proceed slowest when -
    5·1 answer
  • The reactivity of an atom arises primarily from ___.
    9·1 answer
  • Based on the diagram below, rank the three objects from least dense to most dense
    14·1 answer
  • A dog ran 10 meters in 2 seconds. What was the dog's speed? (Use the
    13·2 answers
  • The acceleration of an object would increase if there was an increase in:
    5·1 answer
  • A total charge of 7.5 mC passes through a cross-sectional area of a wire in 0.9 s. What is the current in the wire
    8·1 answer
  • A spotlight on the ground shines on a wall 12 m away. If a man 2 m tall walks from the spotlight toward the building at a speed
    6·1 answer
  • In a fusion reactor, the high temperature of the order of 10 8 K is required in order that what condition is met
    9·1 answer
  • What’s the awnser to that question
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!