Answer:
Mass = 29.23 g
Explanation:
Given data:
Volume of solution = 814.2 mL 814.2/1000 = 0.8142 L)
Molarity of solution = 0.227 M
Mass of solute in gram = ?
Solution:
Molarity = number of moles / volume in L
By putting values,
0.227 M = number of moles / 0.8142 L
Number of moles = 0.227 M × 0.8142 L
Number of moles = 0.184 mol
Mass in gram:
Mass = number of moles × molar mass
Molar mass of calcium acetate = 158.17 g/mol
Mass = 0.184 mol × 158.17 g/mol
Mass = 29.23 g
Answer:
4 Co(s) + 3 O2(g) = 2 Co2O3(s)
Explanation:
Answer:
E) Intramolecular bond angles change
Explanation:
Infrared Radiation:
IR is electromagnetic radiations. The wavelength i.e. 700nm to 1000 mm of infrared is longer than invisible light and Its frequency is lower than light, that's why it is invisible to light.
- When IR radiation strike the molecule it absorbed by this molecule.
- This radiation used to identify and study chemicals.
- Infrared radiation interact with intra-bonds of the molecule.
- Bonds in the molecules have vibrational translational and rotational movements
- Due to these vibration, rotation and translation movement it absorb a radiation of specific frequency and wavelength
- These movements of bond are very small and absorbs radiations of very low frequency
- So when Infrared light or radiation absorbed the intra-bonds of the molecule get affected and angles of these bonds changes.
- As the frequency of the absorbed radiation matches the frequency of the bond that vibrates.
So
The correct option is option E
E) Intramolecular bond angles change
* Note:
it couldn't be option A as the frequency of IR is not enough to rotate a whole molecule
It Couldn't be option B as IR rations are electromagnetic radiation of longer wave length so it one can not see it with light so how it will glow a molecule
It also not could be the option C as for the excitation of electrons require much higher energy.
It also not the option D as nuclear magnetic spin is associated with nuclear magnetic radiation that are much different from IR.
Conditions:
Low pressure and low temperature
Low pressure and high temperature
High pressure and low temperature
High pressure and high temperature