Answer:
1.96mL
Explanation:
Density = mass/volume, and rearranged to solve for volume, volume = mass/density.
So:
volume = 5.30g/2.70g/mL = 1.96mL (assuming your unit was g/mL for density)
According to the valence shell electron pair repulsion (VSPER) theory, an ammonia molecule <span> has a </span>trigonal pyramidal<span> shape with an experimental bond angle measure of 106.7 degrees. This is why it is difficult to accurately represent ammonia two-dimensionally because the molecular structure entails a 3-D projection with angles in it unlike the linear structure.</span>
Answer:
-608KJ/mol
Explanation:
3 C2H2(g) -> C6H6(g)
ΔHrxn = ΔHproduct - ΔHreactant
ΔHrxn= ΔHC6H6 - 3ΔHC2H2
ΔHrxn = 83 - 3(230)
ΔHrxn = -608
Fe2O3 + 2Al ---> Al2O3 + 2Fe
Mole ratio Fe2O3 : Al = 1:2
No. of moles of Fe2O3 = Mass/RMM = 250 / (55.8 * 2 + 16 * 3) = 1.56641604 moles
No. of moles of Al = 150/27 = 5.555555555 moles.
Mole ratio 1 : 2. 1.56641604 * 2 = 3.13283208 moles of Al, but you have 5.555555555 moles of Al. So Al is in excess. All of it won't react.
So take the Fe2O3 and Fe ratio to calculate the mass of iron metal that can be prepared.
RMM of Fe2O3 / Mass of Fe2O3 = RMM of 2Fe / Mass of Fe 159.6 / 250 = 111.6 / x x = 174.8 g of Fe
P
H
=
−
log
10
[
H
3
O
+
]
=
−
log
10
{
2.3
×
10
−
6
}
=
−
{
−
5.64
}
=
5.64