Let us assume that there is a 100g sample of Opal. The masses of each element will be:
29.2g Si
33.3g O
37.5g H2O
Now we divide each constituent's mass by its Mr to get the moles present
Si: (29.2 / 28) = 1.04
O: (33.3 / 16) = 2.08
H2O: (37.5 / 18) = 2.08
Now we divide by the smallest number and obtain:
Si: 1
O: 2
H2O: 2
Thus, the empirical formula of Opal is:
SiO2 . 2H2O
Answer:
the simplest answer is it loses the water (decahydrate) because it evaporates
<span>The light spectrum that results from the light produced by an excited electron moving from a higher energy level back down to a lower energy level is an emission spectrum. The emission spectrum is formed by the electromagnetic radiation released by the transition in energy state.</span>
Answer:
Check the explanation
Explanation:
When talking about our universe there are 5 d orbitals. The element of first transition series moves away from the universal principles of Hund's rule and Aufbav's principle. So in order to attain stability these elements tend to form half or full filled orbitals.
In our universe the ground state electronic configuration of sixth transition metal, Iron (Fe) : [Ar] 
and the electronic configuration of seventh transition metal, Cobalt (Co) : [Ar] 
=================================
=================================
In universe L there are seven orbitals.
Ground state electronic configuration of sixth and seven transition element.
Sixth transition metal: [Ar] ![3d^{7} 4s^1 or [X] 3d^{7} 4s^1](https://tex.z-dn.net/?f=3d%5E%7B7%7D%204s%5E1%20or%20%5BX%5D%203d%5E%7B7%7D%204s%5E1)
Seventh transition metal: [Ar] ![3d^{7} 4s^{2}or [X] 3d^{7} 4s^{2}](https://tex.z-dn.net/?f=3d%5E%7B7%7D%204s%5E%7B2%7Dor%20%5BX%5D%203d%5E%7B7%7D%204s%5E%7B2%7D)
Answer:
No reaction is observed
Explanation:
The benzene ring is aromatic. Being an aromatic ring, the benzene ring is remarkably stable to all reactions that destroy the aromatic ring.
Alkenes are oxidized to alkanols in the presence of KMnO4 but this reaction does not occur with benzene. However, substituted benzenes having hydrogen atoms attached to the substituent carbon atom can be oxidized to the corresponding carboxylic acid.