The amount of movement, linear momentum, momentum or momentum is a physical quantity derived from a vector type that describes the movement of a body in any mechanical theory. In classical mechanics, the amount of movement is defined as the product of body mass and its velocity at a given time.
p= mv
Where,
m = mass
v = Velocity
Our values are given as,


Replacing we have that,


Therefore the momentum is 
Explanation:
At the instant of release there is no force but an acceleration of a, this means the ball is falling freely under the force of gravity. Then the acceleration would be due to force of gravity and acceleration a = g =9.81 m/s^2.
g= acceleration due to gravity
Answer:


Explanation:
v = Velocity of the elevator = 3.1 m/s
= Angle of the slope = 
Vertical component is given by

The vertical component of the velocity is
.
Horizontal component is given by

The horizontal component of the velocity is
.
Acceleration = (change in speed) / (time for the change)
Acceleration = (4 m/s) / (8 seconds)
Acceleration = 0.5 m/s²
Force = (mass) x (acceleration)
Force = (85 kg) x (0.5 m/s²)
Force = 42.5 Newtons
Answer:
R = 7 [amp]
Explanation:
To solve this problem we must use ohm's law which tells us that the voltage is equal to the product of the current by the resistance. In this way, we have the following equation.
V = I*R
where:
V = voltage = 49 [V] (units of volts)
I = current = 7 [amp] (amperes)
R = resistance [ohms]
Now clearing R.
R =V/I
R = 49/7
R = 7 [amp]