Since phosphoric acid is H3PO4, which is known from PO4, with a charge of 3- so 3 hydrogen would balance it out, and sodium hydroxide is NaOH, it can be assumed that it results in H3(OH)3 + Na3PO4.
Explanation:
When an atom has an equal number of electrons and protons, it has an equal number of negative electric charges (the electrons) and positive electric charges (the protons). The total electric charge of the atom is therefore zero and the atom is said to be neutral. ... Chemically, we say that the atoms have formed bonds.
Explanation:
The given molecule is
H3C - C ≡ C - CH3
The numbering order is shown below:
H3C - C ≡ C - CH3
1 2 3 4
So, the alkyne group is in the second position.
The carbon chain has four carbons.
Hence, the IUPAC name of the given compound is:
2-butyne.
I'm guessing its Sublimation point of water
Hope this helps
Answer:
127.3° C, (This is not a choice)
Explanation:
This is about the colligative property of boiling point.
ΔT = Kb . m . i
Where:
ΔT = T° boling of solution - T° boiling of pure solvent
Kb = Boiling constant
m = molal (mol/kg)
i = Van't Hoff factor (number of particles dissolved in solution)
Water is not a ionic compound, but we assume that i = 2
H₂O → H⁺ + OH⁻
T° boling of solution - 118.1°C = 0.52°C . m . 2
Mass of solvent = Solvent volume / Solvent density
Mass of solvent = 500 mL / 1.049g/mL → 476.6 g
Mol of water are mass / molar mass
76 g / 18g/m = 4.22 moles
These moles are in 476.6 g
Mol / kg = molal → 4.22 m / 0.4766 kg = 8.85 m
T° boling of solution = 0.52°C . 8.85 m . 2 + 118.1°C = 127.3°C