<u>Answer:</u> The mass of arsenic found in the sample is 0.25 mg
<u>Explanation:</u>
ppm is the amount of solute (in milligrams) present in kilogram of a solvent. It is also known as parts-per million.
To calculate the ppm of oxygen in sea water, we use the equation:

Both the masses are in grams.
We are given:
Concentration of arsenic = 5 ppm
Mass of sample = 50 g
Putting values in above equation, we get:

<u>Conversion factor used:</u> 1 g = 1000 mg
Hence, the mass of arsenic found in the sample is 0.25 mg
Answer:
5 km = 3.107 miles
one Kilometer is equal to 0.621371 meters
so the equation is
5 km times 0.621371 m
is equal to 3.107
Answer:
a)
b)
Explanation:
a) The reaction:

The free-energy expression:

![E=E_{red}-E_{ox]](https://tex.z-dn.net/?f=E%3DE_%7Bred%7D-E_%7Box%5D)
The element wich is reduced is the Fe and the one that oxidates is the Mg:

The electrons transfered (n) in this reaction are 2, so:


b) If you have values of enthalpy and enthropy you can calculate the free-energy by:

with T in Kelvin


Answer:
Explanation:
From the statement of the problem,
B₂S₃
+ H₂O
→ H₃BO₃
+ H₂S
B₂S₃ + H₂O → H₃BO₃ + H₂S
We that the above expression does not conform with the law of conservation of mass:
To obey the law, we need to derive a balanced reaction equation:
Let us use the mathematical method to obtain a balanced equation.
let the balanced equation be:
aB₂S₃ + bH₂O → cH₃BO₃ + dH₂S
where a, b, c and d will make the equation balanced.
Conservating B: 2a = c
S: 3a = d
H: 2b = 3c + 2d
O: b = 3c
if a = 1,
c = 2,
b = 6,
2d = 2(6) - 3(2) = 6, d = 3
Now we can input this into our equation:
B₂S₃ + 6H₂O → 2H₃BO₃ + 3H₂S
B₂S₃
+ 6H₂O
→ 2H₃BO₃
+ 3H₂S