Answer:
Kc = 1.09x10⁻⁴
Explanation:
<em>HF = 1.62g</em>
<em>H₂O = 516g</em>
<em>F⁻ = 0.163g</em>
<em>H₃O⁺ = 0.110g</em>
<em />
To solve this question we need to find the moles of each reactant in order to solve the molar concentration of each reactan and replacing in the Kc expression. For the reaction, the Kc is:
Kc = [H₃O⁺] [F⁻] / [HF]
<em>Because Kc is defined as the ratio between concentrations of products over reactants powered to its reaction coefficient. Pure liquids as water are not taken into account in Kc expression:</em>
<em />
[H₃O⁺] = 0.110g * (1mol /19.01g) = 0.00579moles / 5.6L = 1.03x10⁻³M
[F⁻] = 0.163g * (1mol /19.0g) = 0.00858moles / 5.6L = 1.53x10⁻³M
[HF] = 1.62g * (1mol /20g) = 0.081moles / 5.6L = 0.0145M
Kc = [1.03x10⁻³M] [1.53x10⁻³M] / [0.0145M]
<h3>Kc = 1.09x10⁻⁴</h3>
The Lewis formula refers to a diagram showing the distribution of electrones and in case of a molecule it also shows the bonds.
The structural formula on the other hand is a representation of the molecular structure that shows all the atoms that form the molecule, arranged in a three dimentional space,
In this case we have the hydrogen ion, which is the simpliest case we can have.
Hydrogen ion is the hydrogen atom possitively charged as it has lost his electron. Therefore the structural formula is simply the following:
The Lewis formula is also very simple as this ion has no electrons and has no bonding to other atoms:
Answer:
C
Explanation
On the reactants side there is 4 Hydrogen atoms in total and two oxygen atoms on the left however on the right there is two hydrogen atoms and one oxygen atom. Leaving this equation unbalanced
He is the closest. Then:
Ne, N2, CO, NH3.
NH3 is the least closest to ideal.