Answer:
D. 15g
Explanation:
The law of conservation of mass states that, in a chemical reaction, mass can neither be created nor destroyed. This means that the amount of matter in the elements of the reactants must be equal to the amount in the resulting products.
In this question, 25 grams of a reactant AB, was broken down in a reaction to produce 10 grams of products A and X grams of product B. According to the law of conservation of mass, the mass of the reactant must be equal to the total mass of the products. This means that 25 grams must also be the total mass of both products in this reaction. Hence, if product A is 10 grams, product B will be 25 grams - 10 grams = 15 grams.
Therefore, product B must be 15 grams in order to form a total of 25 grams when added to the mass of product A. This will equate the mass of the reactant AB and fulfill the law of conservation of mass.
<span>Table salt is inorganic
TNT is organic
Glucose is organic
2,4-D is organic
Limestone is inorganic
Water is inorganic
What makes a compound organic is the presence of a carbon, with the exception of cabonates. In this case all of the compounds in this list that have carbon except for CaCO3, are organic and the other compounds are inorganic.</span>
Answer:
The approximate molar mass of lauryl alcohol is 174.08 g/m
Explanation:
An excersise to apply the colligative property of Freezing-point depression.
This is the formula: ΔT = Kf . m
First of all, think the T° of fusion of benzene → 5.5°C
ΔT = T° pure solvent - T° fusion solution
Kf for benzene: 5.12 °C/m
5.5°C - 4.5°C = 5.12 °C /m . m
1°C / 5.12 m /°C = m
0.195 m = molality
This moles of lauryl alcohol, solute, are in 1 kg of benzene, solvent.
I have to find out in 0.2 kg.
1 kg sv ____ 0.195 moles solute
0.2 kg sv ____ (0.195 . 0.2)/1 = 0.039 moles solute
The mass for these moles is 6.80 g, so if I want to know the molar mass, I have to divide mass / moles
6.80 g/ 0.039 moles = 174.08 g/m
Answer:
Delta H for endothermic reaction is positive-True. This is because an endothermic reaction absorbs heat energy, therefore more energy is retained inside the product of the reaction system than the reactants, as the value of deltaH is greater than Zero.
Delta H for an exothermic reaction is positive. This is false. Because in an exothermic reaction heat is liberated to the surrounding environment. therefore the value of thus the outer environment contains more energy than the internal environments, thus the enthalpy of the reactants is greater than that of the products.
when the energy is transferred as heat from system to surroundings, deltaH is negative. True . This is true because the surrounding environment gain heat energy, (positive)while the system loses it,(negative) therefore delta H is negative.
when the energy is transferred as heat from surroundings to system, deltaH is negative. False. This is positive, because now the environments loses heat, (negative) while the systems gains heat,( positive) therefore delta H of the system is positive. endothermic
the evaporation of water is an exothermic process-False, This is an endothermic reaction in which water molecules need to gain heat energy from the surrounding environments to increase the average kinetic energy of collusion to escape the intermolecular forces to escape as steam.
Combustion reaction is exothermic. True., because heat energy is transferred to the surrounding from the internal system. The energy needed for the formation of new bonds in the products is higher than the energy for breaking of original bonds in the reactants. Thus more heat is liberated.
Explanation: