The magnitude of the electrical force between a pair of charged particles is 4 Times as much when the particles are moved half as far apart.
This can be easily understood by Columb's law,

which state's that the amount of electrical force experienced by two charged particles is inversely proportional to the square of the distance between them.
∴ 
Now, we know the new distance is half the original distance,


The electrical force of attraction or electrostatic force of attraction between two charged particles refers to the amount of attractive or repulsive force that exists between the two charges. This can be calculated by Columb's Law.
A charged particle in physics is a particle that has an electric charge. It might be an ion, such as a molecule or atom having an excess or shortage of electrons in comparison to protons. The same charge is thought to be shared by an electron, a proton, or another primary particle.
Learn more about electrical force here
brainly.com/question/2526815
#SPJ4
Answer:
The pilot is 2214.22 miles from her starting position
Explanation:
Since the pilot is traveling at a constant speed of 635 mph, the total distance traveled can be easily found as follows:

There was a 10 degrees deviation, so the angle between the trajectory of both legs is 170 degrees.
The distance we need to find is that from the start of the first leg to the end of the second leg, those three distances form a triangle and since the side we're interested in is opposite to the 170 degrees angle, we can determine its length by the law of cosines:

The pilot is 2214.22 miles from her starting position
If you're listening to a sound that has a steady pitch, and suddenly the
pitch goes up, then you know that two things could have happened:
EITHER ...
-- The person or other source making the sound could have
raised the pitch of the sound being produced.
OR ...
-- The person or other source making the sound could have
started moving toward you.
OR ...
-- both.
Even if the pitch of the sound leaving the source doesn't change,
you would still hear it increase if the source starts moving toward
you. That's the so-called "Doppler effect".
Answer:
When the ejected air is moving in the downward direction then the thrust force acts in the upward direction, due to reversal thrust, the jets can take off vertically without needing a runway this way.
Explanation:
Newton’s third law motion states that for every action there will be an equal and opposite reaction.
Thrust reversal is also known as reverse thrust. It acts opposite to the motion of the aircraft by providing the deceleration.
Commercial aircraft moves the ejected air in the forward direction means that the thrust will acts opposite to the motion of the aircraft that is backward direction due to thrust reversal. This thrust force might be used to decelerate the craft.
Uses of thrust reversal in practice:
When the ejected air is moving forward direction then the thrust force moving backward direction due to reversal thrust the speed of the craft slows down.
When the ejected air is moving in the downward direction then the thrust force acts in the upward direction, due to reversal thrust, the jets can take off vertically without needing a runway this way.
Because they built:different