Explanation:
As it is given that water level is same as outside which means that theoretically, P = 756.0 torr.
So, using ideal gas equation we will calculate the number of moles as follows.
PV = nRT
or, n = 
= 
= 0.0052 mol
Also, No. of moles = 
0.0052 mol = 
mass = 0.0104 g
As some of the water over which the hydrogen gas has been collected is present in the form of water vapor. Therefore, at
= 24 mm Hg
=
atm
= 0.03158 atm
Now, P = 
= 0.963 atm
Hence, n =
= 0.0056 mol
So, mass of
= 0.0056 mol × 2
= 0.01013 g (actual yield)
Therefore, calculate the percentage yield as follows.
Percent yield = 
=
= 97.49%
Thus, we can conclude that the percent yield of hydrogen for the given reaction is 97.49%.
Answer: 1.67 kg
Explanation:
The quantity of heat required to raise the temperature of a substance by one degree Celsius is called the specific heat capacity.

Q = Heat absorbed=
=
(1kJ=1000J)
m= mass of substance = ?
c = specific heat capacity = 
Change in temperature ,
Putting in the values, we get:

(1kg=1000g)
Thus the mass (in kg) of the copper sample is 1.67
the formula we is as follows:-
M1V1= M2V2
where
M1=1.2
V1=0.133l
V2=41l
M2=?
1.2 × 0.133 = 41 × M2
0.1596 = 41 × M2
M2 = 0.15960/41
M2 = 0.0038926829
The correct answer is <span>Antoine-Laurent de Lavoisier. Hope this helps!</span>
<span>Heterogeneous:
</span>- A salad with tomatoes and almonds
- Salt and Pepper mixed in a bowl (dry)
- A fruit bowl
- Oil and Water
- Solid Tea Herbs and Water
Homogeneous:
- Salt water
- A well blended fruit smoothie
- Lemon water
- Gatorade
- Sprite
<span />