Answer:
237.8L of water would need to be added.
Explanation:
The first thing to do is to identify that the equation to be used is M1V1=M2V2. (This equation works because it turns everything into moles which can then be compared).
Then figure out what information you have and what is being found. In this case:
M1 = 54.7 M
V1 = 1092 mL = 1.092 L
M2 = 0.25 M
V2 = unknown
Then solve the equation for whatever you are trying to find.
M1V1=M2V2
V2=M1V1/M2
Now you need to plug everything in.
V2=(54.7M*1.091L)/0.25M
V2=238.93L
That means that the solution needs a volume of 238.7L to gain a molarity of 0.25M but the starting solution already had a volume of 1.092 L meaning that to find the amount of solvent that needs to be added you just subtract the starting volume by the volume that the solution needs to be.
238.93L - 1.091L = 237.8L
Therefore the answer is that 237.8L needs to be added to a 1.092L 54.7M NaCl solution to make the concentration 0.25M.
I hope this helps. Let me know if anything is unclear.
Answer: 3M
Explanation: Molarity : It is defined as the number of moles of solute present in one liter of solution.
Formula used :
where,
n = moles of solute
= 0.6 moles
= volume of solution in ml= 200 ml
Now put all the given values in the formula of molarity, we get
Therefore, the molarity of solution will be 3M.
To know if an equation is balanced you need to check and see how much of each molecule is on either side of the arrow. Right now you have 1-Ca, 2-H, 2-Cl on the left side of the arrow and 1-Ca, 2-Cl, and 2-H on the right side too. Because all the molecules are equal on both sides this means that the equation is balanced. So in front of the CaCl2 there is an assumed coefficient of 1. The answer is 1.