1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Aloiza [94]
3 years ago
15

Camphor, a white solid with a pleasant odor, is extracted from the roots, branches, and trunk of the camphor tree. Assume you di

ssolve 70.0 g of camphor (C10H16O) in 575 mL of ethanol, C2H5OH.Calculate the molarity, molality, mole fraction, and weight percentage of camphor in this solution. (The density of ethanol is 0.785 g/mL.)
Chemistry
1 answer:
katrin [286]3 years ago
3 0

<u>Answer:</u> The molarity of solution is 0.799 M , molality of solution is 1.02 m, mole fraction of camphor is 0.045 and mass percent of camphor in solution is 13.43 %

<u>Explanation:</u>

  • <u>Calculating the molarity of solution:</u>

To calculate the molarity of solution, we use the equation:

\text{Molarity of the solution}=\frac{\text{Mass of solute}\times 1000}{\text{Molar mass of solute}\times \text{Volume of solution (in mL)}}

Given mass of camphor = 70.0 g

Molar mass of camphor = 152.2 g/mol

Volume of solution = 575 mL

Putting values in above equation, we get:

\text{Molarity of camphor}=\frac{70\times 1000}{152.2\times 575}\\\\\text{Molarity of camphor}=0.799M

  • <u>Calculating the molarity of solution:</u>

To calculate the mass of ethanol, we use the equation:

\text{Density of substance}=\frac{\text{Mass of substance}}{\text{Volume of substance}}

Density of ethanol = 0.785 g/mL

Volume of ethanol = 575 mL

Putting values in above equation, we get:

0.785g/mL=\frac{\text{Mass of ethanol}}{575mL}\\\\\text{Mass of ethanol}=(0.785g/mL\times 575mL)=451.38g

To calculate the molality of solution, we use the equation:

\text{Molality of solution}=\frac{m_{solute}\times 1000}{M_{solute}\times W_{solvent}\text{ (in grams)}}

where,

m_{solute} = Given mass of solute (camphor) = 70 g

M_{solute} = Molar mass of solute (camphor) = 152.2  g/mol

W_{solvent} = Mass of solvent (ethanol) = 451.38 g

Putting values in above equation, we get:

\text{Molality of camphor}=\frac{70\times 1000}{152.2\times 451.38}\\\\\text{Molality of camphor}=1.02m

  • <u>Calculating the mole fraction of camphor:</u>

To calculate the number of moles, we use the equation:

\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}     .....(1)

<u>For camphor:</u>

Given mass of camphor = 70 g

Molar mass of camphor = 152.2 g/mol

Putting values in equation 1, we get:

\text{Moles of camphor}=\frac{70g}{152.2g/mol}=0.459mol

<u>For ethanol:</u>

Given mass of ethanol = 451.38 g

Molar mass of ethanol = 46 g/mol

Putting values in equation 1, we get:

\text{Moles of ethanol}=\frac{451.38g}{46g/mol}=9.813mol

Mole fraction of a substance is given by:

\chi_A=\frac{n_A}{n_A+n_B}

Moles of camphor = 0.459 moles

Total moles = [0.459 + 9.813] = 10.272 moles

Putting values in above equation, we get:

\chi_{(camphor)}=\frac{0.459}{10.272}=0.045\

  • <u>Calculating the mass percent of camphor:</u>

To calculate the mass percentage of camphor in solution, we use the equation:

\text{Mass percent of camphor}=\frac{\text{Mass of camphor}}{\text{Mass of solution}}\times 100

Mass of camphor = 70 g

Mass of solution = [70 + 451.38] = 521.38 g

Putting values in above equation, we get:

\text{Mass percent of camphor}=\frac{70g}{521.38g}\times 100=13.43\%

Hence, the molarity of solution is 0.799 M , molality of solution is 1.02 m, mole fraction of camphor is 0.045 and mass percent of camphor in solution is 13.43 %

You might be interested in
Plzzzzzzzzzzzzzzzzzzz​
hram777 [196]
Your answer would be c.
4 0
3 years ago
If 180 grams of potassium iodide is dissolved in 100 cm3 of water at 30oC, a(n) _______________ solution is formed. A) saturated
dem82 [27]
The answer is A) saturated
3 0
3 years ago
Read 2 more answers
What is the electron configuration of an element with atomic number 15? A. 1s2 2s2 2p6 B. 1s2 2s2 2p6 3s2 3p5 C. 1s2 2s2 2p6 3s2
kipiarov [429]
B 
hopes this helps!!!!!!!!!
4 0
3 years ago
Read 2 more answers
On a cold morning, the smoke coming out of a chimney is observed to be in blue color. What could be the reason? Name the effect
nirvana33 [79]

Stack effect? I'm not totally sure about this...

Explanation:

Large amount of tiny particles of water droplets, dust and smoke are present on a misty day. These tiny particles in the air scatter blue colour of white light passing through it. When this scattered light reaches our eyes, the smoke appears blue.

6 0
3 years ago
The standard free energy of formation, ΔG∘f, of a substance is the free energy change for the formation of one mole of the subst
OLEGan [10]

Answer:

B. 2 Na(s) + O₂(g) → Na₂O₂(s); ΔG∘f=−451.0 kJ/mol

D. 2 SO(g) + O₂(g) → 2 SO₂(g); ΔG°f=−600.4 kJ/mol

Explanation:

The spontaneity of a reaction  is given by the value of the standard Gibbs free energy of the reaction (ΔG°rxn). The more negative is the ΔG°rxn, the more spontaneous is a reaction.

The ΔG°rxn can be calculated using the following expression:

ΔG°rxn = ∑np × ΔG°f(products) − ∑nr × ΔG°f(reactants)

By definition, the standard Gibbs free energy of formation of simple substances in their most stable state is zero. That is why, in the reaction of formation of a compound ΔG°rxn = ΔG°f(product).

<em>Based on the standard free energies of formation, which of the following reactions represent a feasible way to synthesize the product? </em>

<em>     A. N₂(g) + H₂(g) → N₂H₄(g); ΔG°f=159.3 kJ/mol. </em>

<em>     </em>Not feasible. ΔG°rxn = ΔG°f(product) > 0.

    <em>B. 2 Na(s) + O₂(g) → Na₂O₂(s); ΔG°f=−451.0 kJ/mol</em>

    Feasible. ΔG°rxn = ΔG°f(product) < 0.

    <em>C. 2 C(s) + 2 H₂(g) → C₂H₄(g); ΔG°f=68.20 kJ/mol</em>

    Not feasible. ΔG°rxn = ΔG°f(product) > 0.

    <em>D. 2 SO(g) + O₂(g) → 2 SO₂(g); ΔG°f=−600.4 kJ/mol</em>

    Feasible. ΔG°rxn = ΔG°f(product) < 0.

3 0
3 years ago
Other questions:
  • When the volume of a gas is changed from 11.5 cm3 to ?cm the temperature will change from 415 K to 200 K
    9·1 answer
  • If a solution containing 80.701 g80.701 g of mercury(II) perchlorate is allowed to react completely with a solution containing 1
    5·1 answer
  • The number of valence electrons in an atom with an electron configuration is 1s2 2s2 2p6 3s2 3p4
    6·1 answer
  • What is the relationship between grams and cm³? ​
    12·1 answer
  • . Deltas form mainly due to
    7·2 answers
  • Write the complete balanced chemical equation _A+_BC3-&gt;_AC2 +_ B
    11·1 answer
  • What so ammonia and bleach make
    7·1 answer
  • How many grams of 02 will be formed from 6.5 moles of KCLO3
    7·2 answers
  • MgCl2 (aq) + K2SO4 (aq) --&gt; 2KCl (aq) + MgSO4 (s)
    8·1 answer
  • True or false The density of a subsidence is always the same
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!