Answer:
Frozen Meats – Frozen raw meats that are properly vacuum sealed can be stored in the freezer from 1-3 years depending on the type of meat. However, raw meat that is not vacuum sealed will only last 1-12 months depending on the meat.
Explanation:
hop this helps
I have no idea I know it’s gonna be a number
Answer:
The above compound is an ether. Give thestructure of the product(s) and indicate the major mechanism of the reaction (SN1, SN2, E1 or E2). Indicate stereochemistry when necessary.
The mechanism that explains this transformation begins with the protonation of the ether, which allows the subsequent SN2 attack of the iodide ion. This reaction forms ethyl iodide and ethanol, which is also converted to ethyl iodide by reaction with excess HI.
Explanation:
The SN2 reaction (also known as bimolecular nucleophilic substitution or as an attack from the front) is a type of nucleophilic substitution, where a pair of free electrons from a nucleophile attacks an electrophilic center and binds to it, expelling another group called the leaving group. Consequently, the incoming group replaces the outgoing group in one stage. Since the two reactant species are involved in this slow limiting stage of the chemical reaction, this leads to the name bimolecular nucleophilic substitution, or SN2. Among inorganic chemicals, the SN2 reaction is often known as the exchange mechanism.
Answer:
a) 24.31 g
b) 16.69 g
Explanation:
A mixture of CO2 and Kr weighs 41.0 g and exerts a pressure of 0.729 atm in its container.
After the CO2 is completely removed by absorption with NaOH(s), the pressure in the container is 0.193 atm.
Therefore, Pressure of Kr = 0.193 atm
Pressure of CO2 = 0.729 - 0.193 = 0.536 atm
Their mole fraction can be also determined as follows:
CO2 = 
CO2 = 
= 0.735
Also; for Kr ; we have
Kr =
Kr = 0.265
Molar mass of CO2 = 44 g/mol
Molar mass of Kr = 83.78 g/mol
Mass of CO2 = mole fraction * molar mass = 0.735 * 44 = 32.34
Mass of Kr = 0.265 * 83.78 = 22.20
Total mass = 32.34 +22.20 = 54.54
The Percentage of gas in mixture is as follows:
% CO2 =
* 100 %
= 0.5930
= 59.30%
(a) Mass of CO2 in mixture = 0.5930* 41 g = 24.31 g
% Kr =
* 100 %
= 0.407
= 40.70 %
(b) Mass of Kr in mixture = 0.407 * 41 = 16.69 g
Answer:
ΔHrxn = 239 kj/mol
Explanation:
Given data:
Mass of sodium = 0.230 g
Heat produced = 2390 J
Solution:
Chemical equation:
2Na + 2HCl → 2NaCl + H₂
Number of moles of sodium:
Number of moles of sodium = mass / molar mass
Number of moles of sodium = 0.230 g / 23 g/mol
Number of moles of sodium = 0.01 mol
Enthalpy of reaction:
ΔHrxn = 2390 J / 0.01 mol
ΔHrxn = 239000 j/mol
ΔHrxn = 239 kj/mol