Answer: λ2= 2.34 * 10^-6 C/m
Explanation: In order to calculate the value of the linear charge density of the insulating shell we have to multiply ρ* Volume of the hollow cylinder, so
Volume of cylinder:2*π*b*L *(b-a) where (b-a) is the thickness, then
λ2=Q/L = 634 *10^-6 C/m^3* 2*π*0.042 m*(0.042-0.26)== 2.34 μ C/m
Answer: A light bulb can be all of the following except option C (a consumer product if it is used to light the office of the board of directors.)
Explanation:
Products are classified as being BUSINESS or CONSUMER products according to the buyer's intended use of the product.
-Consumer products: these are sold goods that are used for personal, family, or household use. The intention of the buyer is for the products to satisfy his personal needs and desires. Example of some of the consumer products include: toothpaste, eatables and clothes.
Business products: products that are not for personal use but for the manufacturing of other goods are called business products.
Therefore a bulb is not serving as a personal use when used to light the office of the board of directors rather it's serving as a business product .
Answer:
a) When moving towards a high pressure center the pressure values increase in the equipment
b) This area is called high prison since the weight of the atmosphere on top is maximum
Explanation:
A) A high atmospheric pressure system is an area where the pressure is increasing the maximum value is close to 107 Kpa, the other side as low pressure can have small values 85.5 kPa.
When moving towards a high pressure center the pressure values increase in the equipment
B) This area is called high prison since the weight of the atmosphere on top is maximum
in general they are areas of good weather
Answer:
λ = 5940 Angstroms
Explanation:
This is an exercise of the relativistic Doppler effect
f’= f √((1- v / c) / (1 + v / c))
Where the speed in between the strr and the observer is positive if they move away
Let's use the relationship
c = λ f
f = c /λ
We replace
c /λ’ = c /λ √ ((1- v / c) / (1 + v / c))
λ = λ’ √ ((1- v / c) / (1 + v / c))
Let's calculate
v = 0.01 c
v = 0.01 3 10⁸
v= 3 10⁶ m / s
λ = 6000 √ [(1- 3 10⁶/3 10⁸) / (1+ 3 10⁶/3 10⁸)]
λ = 6000 √ [0.99 / 1.01]
λ = 5940 Angstroms
Well Inertia means something wants to stay in place, and in reality that coin wants to stay in one place, If you placed it on an index card on a cup, and SLOWLY pulled it, it wouldn't be fast enough to overcome that force, if you pulled it quickly that coin would stay in place and drop into the cup.