Swept-frequency pulses have found use in a variety of fields, including spectroscopic methods where effective spin control is necessary.
To find more, we have to study about the spectroscopic methods.
<h3>
What is homonuclear decoupling and broadband excitation?</h3>
- A thorough understanding of the evolution of spin systems during these pulses is crucial for many of these applications since it not only helps to describe how procedures work but also makes new methodologies possible.
- Broadband inversion, refocusing, and excitation employing these pulses are some of the most popular applications in NMR, ESR, MRI, and in vivo MRS in magnetic resonance spectroscopy.
- A generic expression for chirped pulses will be presented in this study, along with numerical methods for calculating the spin dynamics during chirped pulses using solutions along with extensive examples.
Thus, we can conclude that, the swept-frequency pulses have found use in a variety of fields, including spectroscopic methods where effective spin control is necessary.
Learn more about the broadband excitation here:
brainly.com/question/19204110
#SPJ4
The characteristics of the scalar product allows to find the angle between the two vectors is:
The scalar product is the product between two vectors whose result is a scalar.
A . B = |A| |B| cos θ
Where A and B are the vectors, |A| and |B| are the modules of the vectors and θ at the angle between them.
The vector is given in Cartesian coordinates and the unit vectors in these coordinates are perpendicular.
i.i = j.j = 1
i.j = 0
A . B = (4 i - 4j). * -5 i + 7j)
A . B = - 4 5 - 4 7
A. B = -48
We look for the modulus of each vector.
|A| =
|A| =
|A| = 4 √2
|B| =
|B| = 8.60
We substitute.
-48 = 4√2 8.60 cos θ
-48 = 48.66 cos θ
θ = cos⁻¹
θ = 170º
In conclusion using the dot product we can find the angle between the two vectors is:
Learn more about the scalar product here: brainly.com/question/1550649
I believe the correct answer from the choices listed above is option C. X-rays have greater frequency than microwaves. In a electromagnetic spectrum, the order in increasing frequency is as follows:
radio waves,microwaves, terahertz radiation, infrared radiation, visible light, ultraviolet radiation,X-rays<span> and gamma </span>rays<span>.</span>
Answer:
Maximum angle = 3.43⁰
Explanation:
Say that you are given the following information:
vertical distance between the charge plate = 0.03 m
length of the plate = 0.5 m
velocity of the electrons = 5 × 10⁶ ms⁻¹
the maximum angle is given by the formula:

where d = vertical distance between the charge plate
l = length of the plate
substituting the values l and d gives:

maximum angle,

= 3.43⁰
I think it is 1 and 4 hope this helped! ( I am only in middle school)