C.
Galaxies are very big, with millions or billions of stars in them.
Hope this helps!
Answer:
a), b), d), and e) are correct.
Explanation:
c) is incorrect because an object that has a definite shape cannot be in a gaseous state as gaseous objects take the shape of their container.
a) is correct because objects that are liquid have definite volumes but no definite shapes as they take the shape of their containers,
b) is correct as this is the definition of an object which is in a solid state.
d) is correct as this is the definition of an object which is in a gaseous state.
e) is correct as rigidness, the quality of having a definite shape is only exhibited by objects that are in solid state.
Answer:
The scalar product of a and b is: a · b = |a||b| cosθ
Answer:
Explanation:
Assuming the squirrel is jumping off the ground, here's what we know but don't really know...
v₀ = 4.0 at 50.0°
So that's not really the velocity we are looking for. We are dealing with a max height problem, which is a y-dimension thing. Therefore, we need the squirrel's upward velocity, which is NOT 4.0 m/s. We find it in the following way:
which gives us that the upward velocity is
v₀ = 3.1 m/s
Moving on here's what we also know:
a = -9.8 m/s/s and
v = 0
Remember that at the very top of the parabolic path, the final velocity is 0. In order to find the max height of the squirrel, we need to know how long it took him to get there. We are using 2 of our 3 one-dimensional equations in this problem. To find time:
v = v₀ + at and filling in:
0 = 3.1 - 9.8t and
-3.1 = -9.8t so
t = .32 seconds.
Now that we know how long it took him to get to the max height, we use that in our next one-dimensional equation:
Δx =
and filling in:
Δx =
and using the rules for adding and subtracting sig fig's correctly, we can begin to simplify this:
Δx = .99 - .50 so
Δx = .49 meters
Answer:
The doorbell transforms electrical energy into sound.
Explanation:
The doorbell MAY turn electrical energy into motion of a striker which then impacts a resonator creating sound. However all door bells do not have solenoids. Some are electronic playing recordings when activated.
All doorbells do produce sound, though.