Answer:
3.43×10¹ mol
Explanation:
Given data:
Initial number of moles = 12.4 mol
Initial volume = 122.8 L
Final number of moles = ?
Final volume = 339.2 L
Solution:
The number of moles and volume are directly proportional to each other at same temperature and pressure.
V₁/n₁ = V₂/n₂
122.8 L/ 12.4 mol = 339.2 L / n₂
n₂ = 339.2 L× 12.4 mol / 122.8 L
n₂ = 4206.08 L.mol /122.8 L
n₂ = 34.3mol
In scientific notation:
3.43×10¹ mol
Answer:
A molecule that has only nonpolar bonds and no polar bonds cannot be polar.
Explanation:
However, a molecule that CONTAINS nonpolar bonds is different, because it can contain polar bonds. A molecule that contains nonpolar bonds can be polar as long as it also contains polar bonds.
Pls, choose me as brainliest!
NO, it should not be the process is still the same . the only factors about it that should change is the experiment itself.:)
Answer:
Fe(NO₃)₃ + 3KSCN → Fe(SCN)₃ + 3KNO₃
Explanation:
Chemical equation:
Fe(NO₃)₃ + KSCN → Fe(SCN)₃ + KNO₃
Balanced Chemical equation:
Fe(NO₃)₃ + 3KSCN → Fe(SCN)₃ + 3KNO₃
Type of reaction:
It is double displacement reaction.
In this reaction the anion or cation of both reactants exchange with each other. In given reaction the cation Fe⁺³ exchange with cation K⁺.
The given reaction equation is balanced so there are equal number of atoms of each elements are present on both side of equation and completely hold the law of conservation of mass.
Double replacement:
It is the reaction in which two compound exchange their ions and form new compounds.
AB + CD → AC +BD
<span>We can use the ideal gas law PV=nRT
For the first phase
The starting temperature (T1) is 273.15K (0C). n is 1 mole, R is a constant, P = 1 atm, V1 is unknown.
The end temperature (T2) is unknown, n= 1 mol, R is a constant, P = 3*P1= 3 atm, V2=V1
Since n, R, and V will be constant between the two conditions: P1/T1=P2/T2
or T2= (P2*T1)/(P1) so T2= (3 atm*273.15K)/(1 atm)= 3*273.15= 816.45K
For the second phase:
Only the temperature and volume change while n, P, and R are constant between the start and finish.
So: V1/T1=V2/T2 While we don't know the initial volume, we know that V2=2*V1 and T1=816.45K
So T2=(V2*T1)/V1= (2*V1*T1)/V1=2*T1= 2*816.45K= 1638.9K
To find the total heat added to the gas you need to subtract the original amount of heat so
1638.9K-273.15K= 1365.75K</span>