Answer : The partial pressure of
is, 67.009 atm
Solution : Given,
Partial pressure of
at equilibrium = 30.6 atm
Partial pressure of
at equilibrium = 13.9 atm
Equilibrium constant = 
The given balanced equilibrium reaction is,

The expression of
will be,

Now put all the values of partial pressure, we get


Therefore, the partial pressure of
is, 67.009 atm
Answer:
The answer is "Including all three studies of 0s to 2s, that shift in momentum is equal".
Explanation:
Its shift in momentum doesn't really depend on the magnitude of its cars since the forces or time are similar throughout all vehicles.
Let's look at the speed of the car

We use movies and find lips

The moment is defined by

The moment change

Let's replace the speeds in this equation

They see that shift is not directly proportional to the mass of cars since the force and time were the same across all cars.
Answer:
The answer to your question is va = 8 cm/s, vb = 12.5 cm/s, a = 9 cm/s²
Explanation:
Data
Ta = 0.125 s
Tb = 0.08 s
Δtab = 0.5 s
distance = 1 cm
Process
1.- Calculate va
va = 1/0.125 = 8 cm/s
vb = 1/0.08 = 12.5 cm/s
2.- Calculate Δv
Δv = 12.5 - 8
Δv = 4.5 cm/s
3.- Calculate acceleration
a = Δv / Δt
a = 4.5/0.5
a = 9 cm/s²
Answer:
The correct answer is option D.
Explanation:
Acoustic : A branch of physics which study the properties of sound.
Consonance: Combination of notes occurring simultaneously due to relationship between their respective frequencies.
Timbre: A characteristic of a musical note which makes it distinct from another wave which also have same pitch and intensity.
Dissonance :When combination of two notes are played simultaneously with lack of harmony in between them.
Hence, the correct answer is option D.
Answer:

Explanation:
given data:
refractive index of lens 1.50
focal length in air is 30 cm
focal length in water is -188 cm
Focal length of lens is given as
![\frac{1}{f} =\frac{n_2 -n_1}{n_1} * \left [\frac{1}{r1} -\frac{1}{r2} \right ]](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7Bf%7D%20%3D%5Cfrac%7Bn_2%20-n_1%7D%7Bn_1%7D%20%2A%20%5Cleft%20%5B%5Cfrac%7B1%7D%7Br1%7D%20-%5Cfrac%7B1%7D%7Br2%7D%20%20%20%5Cright%20%5D)
![\frac{1}{f} =\frac{n_{g} -n_{air}}{n_{air}} * \left [\frac{1}{r1} -\frac{1}{r2} \right ]](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7Bf%7D%20%3D%5Cfrac%7Bn_%7Bg%7D%20-n_%7Bair%7D%7D%7Bn_%7Bair%7D%7D%20%2A%20%5Cleft%20%5B%5Cfrac%7B1%7D%7Br1%7D%20-%5Cfrac%7B1%7D%7Br2%7D%20%20%20%5Cright%20%5D)
![\frac{1}{f} =\frac{n_{g} -1}{1} * \left [\frac{1}{r1} -\frac{1}{r2} \right ]](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7Bf%7D%20%3D%5Cfrac%7Bn_%7Bg%7D%20-1%7D%7B1%7D%20%2A%20%5Cleft%20%5B%5Cfrac%7B1%7D%7Br1%7D%20-%5Cfrac%7B1%7D%7Br2%7D%20%20%20%5Cright%20%5D)
focal length of lens in liquid is
![\frac{1}{f} =\frac{n_{g} -n_{l}}{n_{l}} * \left [\frac{1}{r1} -\frac{1}{r2} \right ]](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7Bf%7D%20%3D%5Cfrac%7Bn_%7Bg%7D%20-n_%7Bl%7D%7D%7Bn_%7Bl%7D%7D%20%2A%20%5Cleft%20%5B%5Cfrac%7B1%7D%7Br1%7D%20-%5Cfrac%7B1%7D%7Br2%7D%20%20%20%5Cright%20%5D)

rearrange fro


