c. Isoleucine has a carbon “branched” closer to the alpha carbon than does leucine.
The structure of leucine is CH3CH(<u>CH3</u>)CH2CH(NH2)COOH.
The structure of isoleucine is CH3CH2CH(<u>CH3</u>)CH(NH2)COOH.
In leucine, the CH3 group is <em>two carbons away</em> <em>from</em> the α carbon; in isoleucine, the CH3 group is on the carbon <em>next to</em> the α carbon.
Thus, <em>isoleucine</em> has the closer branched carbon.
“One is charged, the other is not” is i<em>ncorrect</em>. Both compounds are uncharged.
“One has more H-bond acceptors than the other” is <em>incorrect</em>. Each acid has two H-bond acceptors — the N in the amino and the O in the carbonyl group.
“They have different numbers of carbon atoms” is <em>incorrec</em>t. They each contain six carbon atoms.
Elements in the same group have the same amount of electrons.
Elements in the same period have the same amount of atomic orbits.
Hope this helps!
Answer:
Intermolecular forces are much weaker than the strong covalent bonds within the molecules. ... Very little energy is needed to overcome the intermolecular forces, so simple molecular substances usually have low melting and boiling points. They are often liquids or gases at room temperature
The Earth holds livings things and even the layer has more complex layers in it (Also it's not white) And of course there are no oceans