You would also have to eat right lol
Answer:
f = 1.18 x 10¹¹ Hz
Explanation:
The equation used to find frequency is:
f = c / w
In this form, "f" represents the frequency (Hz), "c" represents the speed of light (3.0 x 10⁸ m/s), and "w" represents the wavelength (m).
Since you have been given the value of the constant (c) and wavelength, you can substitute these values into the equation to find frequency.
f = c / w <---- Formula
f = (3.0 x 10⁸ m/s) / w <---- Plug 3.0 x 10⁸ in "c"
f = (3.0 x 10⁸ m/s) / (2.55 x 10⁻³ m) <---- Plug 2.55 x 10⁻³ in "w"
f = 1.18 x 10¹¹ Hz <---- Divide
Answer:
2.55 × 10³ J =2.55 kJ
Explanation:
Specific heat capacity of ice = 37.8 J / mol °C
Specific heat capacity of water = 76.0 J/ mol °C
Ice at -12 °C is converted to ice at 0 °C by absorbing heat Q₁
Ice at 0°C melts to water at 0 °C. Let Heat absorbed during this phase change be Q₂ .
Let heat absorbed to raise the temperature of water from 0 C to 24°C be Q₃ .
Total heat = Q = Q₁ + Q₂ + Q₃
Q₁ = (37.8 j/mol C )(5.53 g /18.01532 g/ mol )( 0-(-12)) = 139.23749 j
Q₂ =(5.53 g/18.01532 g H₂O / mol ) (6.02 x10³ j) = 1847.905 j
Q₃ = (76 j/mol C) ( (5.53 g/18.01532 g H₂O / mol )(24-0) = 559.8968 j
Total Heat required = Q = 139.23749 j + 1847.905 j + 559.8968 j
= 2547.039 j = 2.55 × 10³ J =2.55 kJ
An instrument used to observe or imagine very small object using an optical mangifier
mirco cell.
Telescope is a magnifer of distance object
Catalytic ozone destruction occurs in the stratosphere where the reactions involving bromine, chlorine, hydrogen, nitrogen and oxygen gases form compounds that destroy the ozone layer. The reactions uses a catalyst (speeds up the reaction) in a two step reaction. considering chlorine the reactions appears as follows;
step 1
Cl + O3 = ClO + O2
step 2
ClO + O = Cl + O2
Where by chlorine is released to destroy the ozone layer, this takes place many times even with the other elements (hydrogen, bromine, nitrogen) and the end result is a completely destroyed Ozone layer