Answer:
<em>A stable ride</em>
Explanation:
A Catamaran hull is a form of sea craft invented by the Austronesian peoples, the invention of the Catamaran hull enabled these people to sail across the sea in their expansion to the islands of the Indian and Pacific Oceans. Catamaran has multiple hulls, usually two parallel hulls of equal size. This geometric feature gives the craft an increased stability because,<em> it derives extra stability from its wide beam, in the place of a ballasted keel employed in a regular monohull sailboat. </em>A Catamaran hull will require four times the force needed to capsize it, when compared to an equivalent monohull.
Answer:

Explanation:
solution:
from this below equation (1)
σ/2εo
...........(1)
we obtain:


A jack plane is a general purpose woodworking bench plane, used for dressing timber down to the correct size in preparation for truing and/or edge jointing.
I hope this helps you :)
Answer:
V₂ = 20 V
Vt = 20 V
V₁ = 20 V
V₃ = 20 V
I₁ = 10 mA
I₃ = 3.33 mA
It = 18.33 mA
Rt = 1090.91 Ω
Pt = 0.367 W
P₁ = 0.2 W
P₂ = 0.1 W
P₃ = 0.067 W
Explanation:
Part of the picture is cut off. I assume there is a voltage source Vt there?
First, use Ohm's law to find V₂.
V = IR
V₂ = (0.005 A) (4000 Ω)
V₂ = 20 V
R₁ and R₃ are in parallel with R₂ and the voltage source Vt. That means V₁ = V₂ = V₃ = Vt.
V₁ = 20 V
V₃ = 20 V
Vt = 20 V
Now we can use Ohm's law again to find I₁ and I₃.
V = IR
I = V/R
I₁ = (20 V) / (2000 Ω)
I₁ = 0.01 A = 10 mA
I₃ = (20 V) / (6000 Ω)
I₃ = 0.00333 A = 3.33 mA
The current It passing through Vt is the sum of the currents in each branch.
It = I₁ + I₂ + I₃
It = 10 mA + 5 mA + 3.33 mA
It = 18.33 mA
The total resistance is the resistance of the parallel resistors:
1/Rt = 1/R₁ + 1/R₂ + 1/R₃
1/Rt = 1/2000 + 1/4000 + 1/6000
Rt = 1090.91 Ω
Finally, the power is simply each voltage times the corresponding current.
P = IV
Pt = (0.01833 A) (20 V)
Pt = 0.367 W
P₁ = (0.010 A) (20 V)
P₁ = 0.2 W
P₂ = (0.005 A) (20 V)
P₂ = 0.1 W
P₃ = (0.00333 A) (20 V)
P₃ = 0.067 W