Answer:
Aqueous solution of ionic compounds conduct electricity while solid ionic compounds don't.
Explanation:
Ionic compound conduct electricity when liquid or in aqueous solution that is resolved in water because the ionic bonds of the compound become weak and the ions are free to move from place to place.
Ionic compounds don't conduct electricity while in solid state because the ionic bonds are to strong and ions cannot move around with lack of space for movement which makes the electric conductivity zero.
Answer:
M = 281.25 lb*ft
Explanation:
Given
W<em>man</em> = 150 lb
Weight per linear foot of the boat: q = 3 lb/ft
L = 15.00 m
M<em>max</em> = ?
Initially, we have to calculate the Buoyant Force per linear foot (due to the water exerts a uniform distributed load upward on the bottom of the boat):
∑ Fy = 0 (+↑) ⇒ q'*L - W - q*L = 0
⇒ q' = (W + q*L) / L
⇒ q' = (150 lb + 3 lb/ft*15 ft) / 15 ft
⇒ q' = 13 lb/ft (+↑)
The free body diagram of the boat is shown in the pic.
Then, we apply the following equation
q(x) = (13 - 3) = 10 (+↑)
V(x) = ∫q(x) dx = ∫10 dx = 10x (0 ≤ x ≤ 7.5)
M(x) = ∫10x dx = 5x² (0 ≤ x ≤ 7.5)
The maximum internal bending moment occurs when x = 7.5 ft
then
M(7.5) = 5(7.5)² = 281.25 lb*ft
The current IDS is greater than 0 since the VGS has induced an inversion layer and the transistor is operating in the saturation region.
<u>Explanation:</u>
- Since
>
because
> Vt. - By the saturation region the MOSFET is operating.
- A specific source voltage and gate of NMOS, the voltage get drained during the specific level, the drain voltage is rises beyond where there is no effect of current during saturated region.
- MOSFET is a transistor which is a device of semiconductor vastly used for the electronic amplifying signals and switching in the devices of electronics.
- The core of this is integrated circuit.
- It is fabricated and designed in an individual chips due to tiny sizes.
Answer:
It will indicate the percentage of sand, silt, and clay present in the soil.
Explanation:
Answer:
Given that
Mass flow rate ,m=2.3 kg/s
T₁=450 K
P₁=350 KPa
C₁=3 m/s
T₂=300 K
C₂=460 m/s
Cp=1.011 KJ/kg.k
For ideal gas
P V = m R T
P = ρ RT


ρ₁=2.71 kg/m³
mass flow rate
m= ρ₁A₁C₁
2.3 = 2.71 x A₁ x 3
A₁=0.28 m²
Now from first law for open system

For ideal gas
Δh = CpΔT
by putting the values


Q= - 45.49 KJ/kg
Q =- m x 45.49 KW
Q= - 104.67 KW
Negative sign indicates that heat transfer from air to surrounding