Answer:
coupling is in tension
Force = -244.81 N
Explanation:
Diameter of Hose ( D1 ) = 35 mm
Diameter of nozzle ( D2 ) = 25 mm
water gage pressure in hose = 510 kPa
stream leaving the nozzle is uniform
exit speed and pressure = 32 m/s and atmospheric
<u>Determine the force transmitted by the coupling between the nozzle and hose </u>
attached below is the remaining part of the detailed solution
Inlet velocity ( V1 ) = V2 ( D2/D1 )^2
= 32 ( 25 / 35 )^2
= 16.33 m/s
The equations are based on the following assumptions
1) The bar is straight and of uniform section
2) The material of the bar is has uniform properties.
3) The only loading is the applied torque which is applied normal to the axis of the bar.
4) The bar is stressed within its elastic limit.
Nomenclature
T = torque (Nm)
l = length of bar (m)
J = Polar moment of inertia.(Circular Sections) ( m^4)
J' = Polar moment of inertia.(Non circluar sections) ( m^4 )
K = Factor replacing J for non-circular sections.( m^4)
r = radial distance of point from center of section (m)
ro = radius of section OD (m)
τ = shear stress (N/m^2)
G Modulus of rigidity (N/m^2)
θ = angle of twist (radians)
Explanation:
Label and group products. One would think that a general cleanup would be the first step, but no, it's not. ...Clean up the area. ...Put up demarcation lines. ...Stack properly. ...Keep the aisles, paths and ramps clear. ...Have all the safety signs in place.
If a clock frequency is applied to a cascaded counter, The lowest output frequency available will be
- The lowest output frequency will be =

<h3>
Cascade Counter</h3>
For a cascade counter,
Overall frequency = 
Overall frequency = 
<h3>Lowest F
requency</h3>
Therefore,
the lowest frequency

For more information on frequency, visit
brainly.com/question/17029587?referrer=searchResults