Answer:
When uranium is mined, it consists of approximately 99.3% uranium-238 (U238), 0.7% uranium-235 (U235), and < 0.01% uranium-234 (U234). These are the different uranium isotopes. Isotopes of uranium contain 92 protons in the atom's center or nucleus. (The number of protons in the nucleus is what makes the atoms "uranium.") The U238 atoms contain 146 neutrons, the U235 atoms contain 143 neutrons, and the U234 atoms contain only 142 neutrons. The total number of protons plus neutrons gives the atomic mass of each isotope — that is 238, 235, or 234, respectively. On an atomic level, the size and weight of these isotopes are slightly different. This implies that with the right equipment and under the right conditions, the isotopes can be separated.
Explanation:
From the measured wavelength from diagram, the frequency of the sound is 6660 Hz.
<h3>What is the frequency of a wave?</h3>
The frequency of a wave is the number of complete oscillation per second completed by a wave.
Frequency is related to wavelength and speed by the following formula:
- Frequency = velocity/wavelength
Velocity of sound in air = 330 m/s
The measured wavelength = 5.0 cm = 0.05 m
Frequency = 330/0.05 = 6660 Hz
Therefore, based on the measured wavelength from diagram, the frequency of the sound is 6660 Hz.
Learn more about frequency of sound at: https://brainly.in/question/15373132
#SPJ1
Answer:
1 kg lead to earth is greater attraction as mass of earth is much more than 1kg lead.
Explanation:
Objects with more mass have more gravity. Gravity also gets weaker with distance. So, the closer objects are to each other, the stronger their gravitational pull is. Earth's gravity comes from all its mass
Answer:
x = 0.775m
Explanation:
Conceptual analysis
In the attached figure we see the locations of the charges. We place the charge q₃ at a distance x from the origin. The forces F₂₃ and F₁₃ are attractive forces because the charges have an opposite sign, and these forces must be equal so that the net force on the charge q₃ is zero.
We apply Coulomb's law to calculate the electrical forces on q₃:
(Electric force of q₂ over q₃)
(Electric force of q₁ over q₃)
Known data
q₁ = 15 μC = 15*10⁻⁶ C
q₂ = 6 μC = 6*10⁻⁶ C
Problem development
F₂₃ = F₁₃
(We cancel k and q₃)

q₂(2-x)² = q₁x²
6×10⁻⁶(2-x)² = 15×10⁻⁶(x)² (We cancel 10⁻⁶)
6(2-x)² = 15(x)²
6(4-4x+x²) = 15x²
24 - 24x + 6x² = 15x²
9x² + 24x - 24 = 0
The solution of the quadratic equation is:
x₁ = 0.775m
x₂ = -3.44m
x₁ meets the conditions for the forces to cancel in q₃
x₂ does not meet the conditions because the forces would remain in the same direction and would not cancel
The negative charge q₃ must be placed on x = 0.775 so that the net force is equal to zero.