The answer is D higher potential energy and is unstable
One mole (abbreviated mol) is equal to 6.022×1023 molecular entities (Avogadro's number), and each element has a different molar mass depending on the weight of 6.022×1023 of its atoms (1 mole). The molar mass of any element can be determined by finding the atomic mass of the element on the periodic table.
Answer:
The molar mass of the liquid 62.89 g/mol
Explanation:
Step 1: Data given
Mass of the sample = 0.1 grams
Temperature = 70°C
Volume = 750 mL
Pressure = 0.05951 atm
Step 2: Calculate the number of moles
p*V = n*R*T
n = (p*V)/(R*T)
⇒ with n = the number of moles gas = TO BE DETERMINED
⇒ with p = The pressure = 0.05951 atm
⇒ with V = The volume of the flask = 750 mL = 0.750 L
⇒ with R = The gasconstant = 0.08206 L*atm/K*mol
⇒with T = the temperature = 70 °C = 343 Kelvin
n = (0.05951 *0.750)/(0.08206*343)
n = 0.00159 moles
Step 3: Calculate molar mass
Molar mass = mass / moles
Molar mass =0.1 gram / 0.00159 moles
Molar mass = 62.89 g/mol
The molar mass of the liquid 62.89 g/mol
Answer:
0.0084
Explanation:
The mole fraction of BaCl₂ (X) is calculated as follows:
X = moles BaCl₂/total moles of solution
Given:
moles of BaCl₂ = 0.400 moles
mass of water = 850.0 g
We have to convert the mass of water to moles, by using the molecular weight of water (Mw):
Mw of water (H₂O) = (2 x 1 g/mol)+ 16 g/mol = 18 g/mol
moles of water = mass of water/Mw of water = 850.0 g/(18 g/mol) = 47.2 mol
The total moles of the solution is given by the addition of the moles of solute (BaCl₂) and the moles of solvent (water):
total moles of solution = moles of BaCl₂ + moles of water = 0.400 + 47.2 mol = 47.6 mol
Finally, we calculate the mole fraction:
X = 0.400 mol/47.6 mol = 0.0084
Phosphorus + Sulfur ------> Phosphorus sulfide
2P + 3S ------> P2S3
Hope it helped!