I think it is "Known".
Radioactive decay is measured using a formula where the half-life <span>of an isotope is the time it takes for the original nuclei to decay half of its original amount.</span>
Multiply 10.49 by 12.993. that should be it. 130 grams ish?
The liquid that is been dispensed during titration as regards this question is Titrant.
- Titration can be regarded as common laboratory method that is been carried out during quantitative chemical analysis.
- This analysis helps to know the concentration of an identified analyte.
- Burette can be regarded as laboratory apparatus.
It is used in the in measurements of variable amounts of liquid ,this apparatus helps in dispensation of liquid, especially when performing titration.
- The specifications is been done base on their volume, or resolution.
- The liquid that comes out of this apparatus is regarded as Titrant, and this is gotten during titration process, which is usually carried out during volumetric analysis.
Therefore, burrete is used in volumetric analysis.
Learn more at:
brainly.com/question/2728613?referrer=searchResults
The mass in a chemical reaction remains (mostly) the same.
(except for radiation/nuclear fission, in which mass gets converted into energy)
Answer:
A. The reaction will proceed forward forming more CH4
B. The reaction will proceed forward forming more CH4
C. Since the reaction is exothermic, raising the temperature will cause the reaction to proceed backward, thus forming C and H2.
D. Lowering the volume makes the gas particles to be more close together thereby enhancing their collisions leading to reaction. Therefore the reaction will proceed forward forming more CH4
E. Catalyst only reduce the activation energy so the reaction can proceed faster. The reaction will proceed forward forming.
F. The following will favour CH4 at equilibrium
i. Catalyst to the reaction mixture,
ii. Both adding more H2 to the reaction mixture and lowering the volume of the reaction mixture
iii. Adding more C to the reaction mixture.