59.78175 kPa is the pressure inside the container when a cylinder at 48.0 atm pressure and 17.0°C releases 35.0 mL of carbon dioxide gas into a 4.00 L container at 24.0°C.
<h3>What is an ideal gas equation?</h3>
An ideal gas equation states the relationship between the moles of the substance, temperature, pressure, and volume. The ideal gas equation is given as, PV=nRT
Given data:
=48.0 atm
=3T_1=17.0°C
=?
=4.00 L
=24.0°C
= 

= 0.59 atm = 59.78175 kPa
Hence, 59.78175 kPa is the pressure inside the container when a cylinder at 48.0 atm pressure and 17.0°C releases 35.0 mL of carbon dioxide gas into a 4.00 L container at 24.0°C.
Learn more about the ideal gas equation here:
brainly.com/question/22368165
#SPJ1
Answer:
The limiting reacting is O2
Explanation:
Step 1: data given
Number of moles O2 = 21 moles
Number of moles C6H6O = 4.0 moles
Step 2: The balanced equation
C6H6O + 7O2 → 6CO2 + 3H2O
Step 3: Calculate the limiting reactant
For 1 mol C6H6O we need 7 moles O2 to produce 6 moles CO2 and 3 moles H2O
O2 is the limiting reactant. It will completely be consumed (21 moles).
C6H6O is in excess.
For 7 moles O2 we need 1 mol C6H6O
For 21 moles O2 we'll need 21/7 = 3 moles C6H6O
There will remain 4.0 - 3.0 = 1 mol C6H6O
Step 4: calculate products
For 1 mol C6H6O we need 7 moles O2 to produce 6 moles CO2 and 3 moles H2O
For 21 moles O2 we'll have 6/7 * 21 = 18 moles CO2
For 21 moles O2 we'll have 3/7 * 21 = 9 moles H2O
The limiting reacting is O2
Answer:
Answer: What can experiments in a lab tell us about substances on Titan? Experiments in a lab can tell us that the lake did not evaporate in 2007 because the molecular attraction was a lot stronger, then it got weaker overtime.
How does Dr. Hayes' and Dr. Malaska’s research differ? Why are both research projects important? Their research differs because they were both talking about different things, Hayes was talking about how many lakes there were, while Malaska's was doing more hands on stuff like experiments. Both are important because we need to learn how the lakes formed, but we also need to do hands on experiments.
Explanation:
Https://www.youtube.com/watch?v=J_MtVs0aBdU
Watch this and it will help you
The formation of ammonia gas involves reacting hydrogen gas and nitrogen gas in a mole ratio of 3 to 1. as shown below:
<h3>What is the equation of the formation of ammonia?</h3>
Ammonia gas is formed from the reaction between nitrogen gas and hydrogen gas.
Three moles of hydrogen gas will react with 1 mole of nitrogen gas to form 2 moles of ammonia gas.
The equation of the reaction is given below as:

Therefore, the formation of ammonia gas involves reacting hydrogen gas and nitrogen gas in a mole ratio of 3 to 1.
Learn more about ammonia gas at: brainly.com/question/7982628