Explanation:
Draw a free body diagram for each disc.
Disc A has three forces acting on it: 86.5 N up, T₁ down, and Wa down.
∑F = ma
86.5 N − T₁ − Wa = 0
Wa = 86.5 N − T₁
ma × 9.8 m/s² = 86.5 N − 55.6 N
ma = 3.2 kg
Disc B has three forces acting on it: T₁ up, T₂ down, and Wb down.
∑F = ma
T₁ − T₂ − Wb = 0
Wb = T₁ − T₂
mb × 9.8 m/s² = 55.6 N − 36.5 N
mb = 1.9 kg
Disc C has three forces acting on it: T₂ up, T₃ down, and Wc down.
∑F = ma
T₂ − T₃ − Wc = 0
Wc = T₂ − T₃
mc × 9.8 m/s² = 36.5 N − 9.6 N
mc = 2.7 kg
Disc D has two forces acting on it: T₃ up and Wd down.
∑F = ma
T₃ − Wd = 0
Wd = T₃
md × 9.8 m/s² = 9.6 N
md = 0.98 kg
Explanation:
Let
is the mass of proton. It is moving in a circular path perpendicular to a magnetic field of magnitude B.
The magnetic force is balanced by the centripetal force acting on the proton as :

r is the radius of path,

Time period is given by :


Frequency of proton is given by :

The wavelength of radiation is given by :


So, the wavelength of radiation produced by a proton is
. Hence, this is the required solution.
You need to provide a picture or tell us the examples... we can’t see what you see
Answer:

Explanation:
M = Mass of each star
T = Time period = 15.5 days
v = Orbital velocity = 230 km/s
G = Gravitational constant = 
Radius of orbit is given by

We have the relation

The mass of each star is 
Answer:
<em>11.06m/s²</em>
Explanation:
According to Newtons second law of motion

Given
Mass m = 17kg
Fm = 208N
theta = 36 degrees
g = 9.8m/s²
a is the acceleration
Substitute
208 - 0.148(17)(9.8)cos 36 = 17a
208 - 24.6568cos36 = 17a
208 - 19.9478 = 17a
188.05 = 17a
a = 188.05/17
a = 11.06m/s²
<em>Hence the the magnitude of the resulting acceleration is 11.06m/s²</em>