Answer:
A few of the positive particles aimed at a gold foil seemed to bounce back
Explanation:
Answer:
vB = 15.4 m/s
Explanation:
Principle of conservation of energy:
Because there is no friction the mechanical energy is conserve
ΔE = 0
ΔE : mechanical energy change (J)
K : Kinetic energy (J)
U: Potential energy (J)
K = (1/2)mv²
U = m*g*h
Where :
m: mass (kg)
v : speed (m/s)
h : hight (m)
Ef - Ei = 0
(K+U)final - (K+U)initial =0
(K+U)final = (K+U)initial
((1/2)mv²+m*g*h)final = ((1/2)mv²+m*g*h)initial , We divided by m both sides of the equation:
((1/2)vB² + g*hB = (1/2 )vA²+ g*hA
(1/2) (vB)² + (9.8)*(14.7) = 0 + (9.8)(26.8 )
(1/2) (vB)² = (9.8)(26.8 ) - (9.8)*(14.7)
(vB)² = (2)(9.8)(26.8 - 14.7)
(vB)² = 237.16

vB = 15.4 m/s : speed of the cart at B
1. <span>Molecules rearrange and form new molecules - exchange (they exchange some material in order to produce new things)
2. </span><span>simultaneous decomposition and synthesis - reversible (it can go back)
3. </span><span>bonds broken and elements released - decomposition
4. </span><span>molecules formed from components - synthesis (these components merge and create molecules)</span>
Answer:
The velocity of the particle from T = 0 s to T = 4 s is;
0.5 m/s
Explanation:
The given parameters from the graph are;
The initial displacement (covered) at time, t₁ = 0 s is x₁ = 1 m
The displacement covered at time, t₂ = 4 s is x₂ = 3 m
The graph of distance to time, from time t = 0 to time t = 4 is a straight line graph, with the velocity given by the rate of change of the displacement to the time which is dx/dt which is also the slope of the graph given as follows;


The velocity of the particle from t = 0 s to t = 4 s = 1/2 m/s = 0.5 m/s.