Answer: um ok...
Explanation: are u saying to join??
Answer:
3.50*10^-11 mol3 dm-9
Explanation:
A silver rod and a SHE are dipped into a saturated aqueous solution of silver oxalate, Ag2C2O4, at 25°C. The measured potential difference between the rod and the SHE is 0.5812 V, the rod being positive. Calculate the solubility product constant for silver oxalate.
Ag2C2O4 --> 2Ag+ + C2O4 2-
So Ksp = [Ag+]^2 * [C2O42-]
In 1 L, 2.06*10^-4 mol of silver oxalate dissolve, giving, the same number of mol of oxalate ions, and twice the number of mol (4.12*10^-4) of silver ions.
So Ksp = (4.12*10^-4)^2 * (2.06*10^-4)
= 3.50*10^-11 mol3 dm-9
Answer:
<h3> 4000</h3>
More than 4,000 naturally occurring minerals—inorganic solids that have a characteristic chemical composition and specific crystal structure—have been found on Earth. They are formed of simple molecules or individual elements arranged in repeating chains, sheets, or three-dimensional arrays.
Answer:
The relationships between molar mass and density for a monoatomic gas can be easy.
The Ideal Gas Law, PV = nRT can be arranged so that n moles equals the mass/molar mass of the gas to become,
PV =
M
mRT
where m is the mass and M is the molar mass.
M =
PV
mRT
, if you hold the temperature of the gas constant the equation reduces to the Boyle's law or
PV
m
The mass will be constant assuming the container is closed and so the gas cannot be escaped so, PV will be constant.
D =
V
m
and M =
PV
mRT
M =
P
DRT
The higher the density of the gas the higher the molar mass and vice versa.
Explanation:
Answer:
The correct answer is 0.11 mol O₂
Explanation:
The chemical equation for the reaction of acetylene (C₂H₂) with O₂ to produce carbon dioxide (CO₂) and water (H₂O) is the following:
2 C₂H₂(g) + 5 O₂(g) → 4 CO₂(g) + 2 H₂O(g)
The chemical equation is balanced : with the proper estequiometrical coefficients. According to this, 2 moles of C₂H₂ reacts with 5 moles of O₂ to give 4 moles of CO₂ and 2 moles of H₂O.
In order to calculate how many moles of O₂ are needed to produce 0.085 moles of CO₂, we multiply the 0.085 moles of CO₂ by the factor 5 moles O₂/4 moles CO₂ (because 4 moles of CO₂ are produced by 5 moles of O₂ according to the chemical equation):
0.085 moles CO₂ x (5 moles O₂/4 moles CO₂) = 0.10625 moles O₂ = 0.11 moles O₂