The amount of Al2O3 in moles= 1.11 moles while in grams = 113.22 grams
<em><u>calculation</u></em>
2 Al + Fe2O3 → 2Fe + Al2O3
step 1: find the moles of Al by use of <u><em>moles= mass/molar mass </em></u>formula
= 60.0/27= 2.22 moles
Step 2: use the mole ratio to determine the moles of Al2O3.
The mole ratio of Al : Al2O3 is 2: 1 therefore the moles of Al2O3= 2.22/2=1.11 moles
Step 3: finds the mass of Al2O3 by us of <u><em>mass= moles x molar mass</em></u><em> </em>formula.
The molar mass of Al2O3 = (2x27) +( 16 x3) = 102 g/mol
mass is therefore= 102 g/mol x 1.11= 113.22 grams
Precipitation calculations with Ni²⁺ and Pb²⁺ a. Use the solubility product for Ni(OH)₂ (s) . the pH at which Ni(OH)₂ begins to precipitate from a 0.18 M Ni²⁺ solution. (Ksp Ni(OH)₂ = 5.5x10⁻¹⁶) is 6.8.
When Ni(OH)₂ starts precipitate :
Ksp of Ni(OH)₂ = [ Ni²⁺ ] [ OH²⁻ ]
5.5x10⁻¹⁶ = [ 0.18 ] [ OH²⁻ ]
[ OH²⁻ ] = 5.5x10⁻¹⁶ / 0.18
[ OH⁻ ] = 5.5 × 10⁻⁸ M
pOH = 7.2
therefore , pH = 14 - 7.2
pH = 6.8
Thus, Precipitation calculations with Ni²⁺ and Pb²⁺ a. Use the solubility product for Ni(OH)₂ (s) . the pH at which Ni(OH)₂ begins to precipitate from a 0.18 M Ni²⁺ solution. (Ksp Ni(OH)₂ = 5.5x10⁻¹⁶) is 6.8.
To learn more about pH here
brainly.com/question/15289741
#SPJ1
Answer:
This part require data such as Avogadro's number and the molar mass of water. But first, let's find the mass of water in the specified volume by making use of the density formula:
Density = mass/volume
1 g/mL = Mass/70 mL
Mass = 70 g
Each water contains 18 grams per mole, and each mole contains 6.022×10²³ molecules of water. Thus,
70 g * 1mole/18 g * 6.022×10²³ molecules/mole = 2.342×10²⁴ molecules of water
Explanation:
Answer:
radiation B species x because short canines are less likely to break.