Well first graph represents rectangular hyperbola
vu = c^2 ( c is constant)
AS 1/v + 1/u = 1/f
Take1/ f to be constant c
1/v = c - 1/u
it is of the form y = - x + k
Slope = -1 having intercept k as shown in fig 2
Answer:
Thus the time taken is calculated as 387.69 years
Solution:
As per the question:
Half life of
= 28.5 yrs
Now,
To calculate the time, t in which the 99.99% of the release in the reactor:
By using the formula:

where
N = No. of nuclei left after time t
= No. of nuclei initially started with

(Since, 100% - 99.99% = 0.01%)
Thus

Taking log on both the sides:


t = 387.69 yrs
Answer:
B. A collision scene
Explanation:
It could have been a parade ceremony, but, if you notice the vehicle's hazard lights or an emergency vehicle ahead, it is common sense to figure that they is a collision scene nearby.
There are different options here but all of them work by approximating and assuming.
i) that the boulder is above ground.
ii) that the bottom surface of the boulder is known.
iii) the shape of the boulder is taken into account.
The most accurate way is measuring it by displacement method but the boulder is immovable hence the volume can be calculated by measuring the boulder or a waterproof box to be built around the boulder and calculate the volume occupied by boulder.
All the above methods are estimating methods.
*Another way to find the density is through specific gravity.
S.G = <u>Density</u><u> </u><u>of</u><u> </u><u>object</u>
Density of water
If the material that makes the boulder is known that is if it's stone or a mineral then the specific gravity can be found.
If the boulder is purely rock then S.G lies between 3 - 3.5 and the density of water is known thus the density of the boulder can be found without moving the boulder.
This is what I think after correction and allthe best!
The power equals energy divided by the time
P=E/t
P=1200/60
P=20W
Hope you get it!