The energy would be transferred from the objects. Also do not forget, add direction to your answer.
Answer:
The final velocity of the runner at the end of the given time is 2.7 m/s.
Explanation:
Given;
initial velocity of the runner, u = 1.1 m/s
constant acceleration, a = 0.8 m/s²
time of motion, t = 2.0 s
The velocity of the runner at the end of the given time is calculate as;

where;
v is the final velocity of the runner at the end of the given time;
v = 1.1 + (0.8)(2)
v = 2.7 m/s
Therefore, the final velocity of the runner at the end of the given time is 2.7 m/s.
Light waves are reflected from front and back surfaces of the thin films and constructive interference between the two reflected waves occurs in different places for different wavelengths. Light shining on the upper surface of the thin film with thickness t is partly reflected at the upper surface (path abc). Light transmitted from the upper surface is partly reflected at the lower surface (path abdef). The two reflected waves come together at point P on the retina of the eye. Depending on the phase relationship, they may interfere constructively or destructively. Different colors have different wavelengths, so the interference may be constructive for some colors and destructive for others.
56-999999999999999999999-4 is the best for my mom