The answer is neutrons and protons.
Hope you got it!!
<span>Answer is: pH of solution of sodium cyanide is 11.3.
Chemical reaction 1: NaCN(aq) → CN</span>⁻(aq)
+ Na⁺<span>(aq).
Chemical reaction 2: CN</span>⁻ +
H₂O(l) ⇄ HCN(aq) + OH⁻<span>(aq).
c(NaCN) = c(CN</span>⁻<span>)
= 0.021 M.
Ka(HCN) = 4.9·10</span>⁻¹⁰<span>.
Kb(CN</span>⁻) = 10⁻¹⁴ ÷
4.9·10⁻¹⁰ = 2.04·10⁻⁵<span>.
Kb = [HCN] · [OH</span>⁻]
/ [CN⁻<span>].
[HCN] · [OH</span>⁻<span>] =
x.
[CN</span>⁻<span>] = 0.021 M - x..
2.04·10</span>⁻⁵<span> = x² / (0.021 M
- x).
Solve quadratic equation: x = [OH</span>⁻<span>] = 0.00198 M.
pOH = -log(0.00198 M) = 2.70.
pH = 14 - 2.70 = 11.3.</span>
Answer:
The coefficient tells you how many molecules of that substance there is. The subscript tells you what the substance it. It tells you the the amount of each element there are in the molecule. Changing it would change the substance itself.
Answer:
D) 2, 4, and 5
Explanation:
In order to fully comprehend the answer choices we must take a close look at the value of ΔH° = 31.05. The enthalpy change of the reaction is positive. A positive value of enthalpy of reaction implies that heat was absorbed in the course of the reaction.
If heat is absorbed in a reaction, that reaction is endothermic.
Since ∆Hreaction= ∆H products -∆H reactants, a positive value of ∆Hreaction implies that ∆Hproducts >∆Hreactants, hence the answer choice above.
Answer:
SO2
Explanation:
Dipole-Dipole exist between parmanent dipoles in a molecule. THis means that molecule must have a parmanent dipole moment in it.
Example - HCl
Hydrogen bonding is an attraction between lone pair of an electronegative element and H atom of same or different molecule. H must be covalantly attached to either F, N or O.
Example - H2O
Among the molecules given in the list only SO2 and H2O exihibits parmanent moment. As BCl3 , CBr4 and H2 are symmetric compounds.
Since, SO2 cannot exihibit H- bonding only dipole-dipole forces as its strongest intermolecular force.