The partial pressure of carbon is 45 mm Hg.
Explanation:
- The partial pressure of carbon dioxide is referred as the amount of carbon dioxide present in venous or arterial blood. It acts as a ventilation in the lungs.
- There is a formula for measuring partial pressure . As we know total pressure means summation of the pressure of all the gases included .
- To find partial pressure we need- total pressure* fraction of mole of that gas. The partial pressure of CO2 is more because it carries deoxygenated blood from the whole body towards the lungs.
Answer:
The possible valances can be determined by electron configuration and electron negativity
Good Luck even though this was asked 2 weeks ago
Explanation:
All atoms strive for stability. The optima electron configuration is the electron configuration of the VIII A family or inert gases.
Look at the electron configuration of the nonmetal and how many more electrons the nonmetal needs to achieve the stable electron configuration of the inert gases. Non metals tend to be negative in nature and gain electrons. ( They are oxidizing agents)
For example Florine atomic number 9 needs one more electron to reach a valance number of 8 electrons to equal Neon atomic number 10. Hence Flowrine has a valance of -1
Oxygen atomic number 8 needs two more electrons to reach a valance number of 8 electrons to equal Neon atomic number 10. Hence Oxygen has a valance charge of -2.
Non metals with a low electron negativity will lose electrons when reacting with another non metal that has a higher electron negativity. When the non metal forms an ion it is necessary to look at the electron structure to determine how many electrons the element can lose to gain stability.
For example Chlorine which is normally -1 like Florine when it combines with oxygen can be +1, +3, + 5 or +7. It can lose its one unpaired electron, or combinations of the unpaired electron and sets of the three pairs of electrons.
Answer:
a. BH₃
Explanation:
According to the octet rules, atoms reach stability when are surrounded by eight electrons in their valence shell when they combine to form a chemical compound.
From the options, the only compound in which the central atom does not meet the octet rules is BH₃. The central atom is boron (B), which has 3 electrons in its valence shell. When B is combined with hydrogen (H), 3 electrons from the 3 atoms of H are added. The total amount of electrons is 6, fewer than 8 electrons needed to meet the rule.
hope this helps
<h3>
Answer:</h3>
25.4 g CH₄
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
<u>Stoichiometry</u>
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
1.58 mol CH₄
<u>Step 2: Identify Conversions</u>
[PT] Molar Mass of C - 12.01 g/mol
[PT] Molar Mass of H - 1.01 g/mol
Molar Mass of CH₄ - 12.01 + 4(1.01) = 16.05 g/mol
<u>Step 3: Convert</u>
- Set up:

- Multiply/Divide:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
25.359 g CH₄ ≈ 25.4 g CH₄
Thallium has got 81 protons
<u>Have a nice days.......</u>