Answer:
Option-A (<span> It would increase from bottom left to top right) is the correct answer.
Explanation:
As we know converting solids into liquids and converting liquids into gases require energy. This energy provided increases the energy of the state and its particles start moving with higher velocities. Therefore, the energy of solids will be lower than liquids and gases respectively. While, liquids have greater energy than solids but less energy than gases. And, gases are the most energetic than solids and liquids.</span>
Answer:
3.336.
Explanation:
<em>Herein, the no. of millimoles of the acid (HCOOH) is more than that of the base (NaOH).</em>
<em />
So, <em>concentration of excess acid = [(NV)acid - (NV)base]/V total</em> = [(30.0 mL)(0.1 M) - (29.3 mL)(0.1 M)]/(59.3 mL) = <em>1.18 x 10⁻³ M.</em>
<em></em>
<em> For weak acids; [H⁺] = √Ka.C</em> = √(1.8 x 10⁻⁴)(1.18 x 10⁻³ M) = <em>4.61 x 10⁻⁴ M.</em>
∵ pH = - log[H⁺].
<em>∴ pH = - log(4.61 x 10⁻⁴) = 3.336.</em>
An organic compound that contains a carbonyl group with a hydroxyl group attached to it is an example of a (d) carboxylic acid.
Answer:
1223.38 mmHg
Explanation:
Using ideal gas equation as:

where,
P is the pressure
V is the volume
n is the number of moles
T is the temperature
R is Gas constant having value = 
Also,
Moles = mass (m) / Molar mass (M)
Density (d) = Mass (m) / Volume (V)
So, the ideal gas equation can be written as:

Given that:-
d = 1.80 g/L
Temperature = 32 °C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T = (32 + 273.15) K = 305.15 K
Molar mass of nitrogen gas = 28 g/mol
Applying the equation as:
P × 28 g/mol = 1.80 g/L × 62.3637 L.mmHg/K.mol × 305.15 K
⇒P = 1223.38 mmHg
<u>1223.38 mmHg must be the pressure of the nitrogen gas.</u>
Answer:
a. Kp=1.4


b.Kp=2.0 * 10^-4


c.Kp=2.0 * 10^5


Explanation:
For the reaction
A(g)⇌2B(g)
Kp is defined as:

The conditions in the system are:
A B
initial 0 1 atm
equilibrium x 1atm-2x
At the beginning, we don’t have any A in the system, so B starts to react to produce A until the system reaches the equilibrium producing x amount of A. From the stoichiometric relationship in the reaction we get that to produce x amount of A we need to 2x amount of B so in the equilibrium we will have 1 atm – 2x of B, as it is showed in the table.
Replacing these values in the expression for Kp we get:

Working with this equation:

This last expression is quadratic expression with a=4, b=-(4+Kp) and c=1
The general expression to solve these kinds of equations is:
(equation 1)
We just take the positive values from the solution since negative partial pressures don´t make physical sense.
Kp = 1.4


With x1 we get a partial pressure of:


Since negative partial pressure don´t make physical sense x1 is not the solution for the system.
With x2 we get:


These partial pressures make sense so x2 is the solution for the equation.
We follow the same analysis for the other values of Kp.
Kp=2*10^-4
X1=0.505
X2=0.495
With x1


Not sense.
With x2


X2 is the solution for this equation.
Kp=2*10^5
X1=50001

With x1


Not sense.
With x2


X2 is the solution for this equation.