Answer:
1. False
2. True
3. True
Explanation:
1- False —> The relation between electric potential and electric field is given such that

Therefore, for a uniform E field, electric potential is linearly proportional to the distance.
2- True —> The electric field lines always cross the equipotential lines perpendicularly.
3- True —> In order to be a potential difference, one source of electric field is enough. The electric potential will decrease radially according to the following formula:

There is no test charge in the formula, only the source charge. Even when there is no test charge, the potential difference between points in space can exist.
Rw/Ra = MA
18cm/2cm= MA
MA = 9
This means that Fi is 1/9 of the force applied to the axil. The distance travelled by Rw is 9 times more than Ri is that you move 9 times more when turning the wheel using Rw.
Put more simply
Rw/Ra = Fa/Fw
- Rw = Radius of the wheel
- Ra = Radius of the axil
- Fa = Force delivered on the axil
- Fw = Force delivered by the wheel
Answer:
0.2m
The solution is in the picture
Vertical Free Fall and Constant Horizontal Motion
It's false. Mass is a way of measuring how much matter an object contains, where as weight measures how hard gravity is pulling on an object. While on earth, these are typically interchangeable. However, if you were to go to Mars, your mass would stay the same, but the weight will be different. This is because you still contain the same amount of matter, but the gravity's pull will be different because the moon has a different gravitational pull than the earth. Hope this helps!